Filtered by vendor Redhat Subscriptions
Filtered by product Rhel Eus Subscriptions
Total 3025 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2025-30698 2 Oracle, Redhat 12 Graalvm, Graalvm For Jdk, Jdk and 9 more 2025-11-03 5.6 Medium
Vulnerability in the Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: 2D). Supported versions that are affected are Oracle Java SE: 8u441, 8u441-perf, 11.0.26, 17.0.14, 21.0.6, 24; Oracle GraalVM for JDK: 17.0.14, 21.0.6, 24; Oracle GraalVM Enterprise Edition: 20.3.17 and 21.3.13. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some of Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition accessible data as well as unauthorized read access to a subset of Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition accessible data and unauthorized ability to cause a partial denial of service (partial DOS) of Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g., code installed by an administrator). CVSS 3.1 Base Score 5.6 (Confidentiality, Integrity and Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:L/A:L).
CVE-2025-30691 3 Netapp, Oracle, Redhat 13 Bootstrap Os, Hci Compute Node, Graalvm For Jdk and 10 more 2025-11-03 4.8 Medium
Vulnerability in Oracle Java SE (component: Compiler). Supported versions that are affected are Oracle Java SE: 21.0.6, 24; Oracle GraalVM for JDK: 21.0.6 and 24. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Oracle Java SE. Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some of Oracle Java SE accessible data as well as unauthorized read access to a subset of Oracle Java SE accessible data. Note: This vulnerability can be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. This vulnerability also applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. CVSS 3.1 Base Score 4.8 (Confidentiality and Integrity impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:L/A:N).
CVE-2025-2817 2 Mozilla, Redhat 8 Firefox, Thunderbird, Enterprise Linux and 5 more 2025-11-03 8.8 High
Thunderbird's update mechanism allowed a medium-integrity user process to interfere with the SYSTEM-level updater by manipulating the file-locking behavior. By injecting code into the user-privileged process, an attacker could bypass intended access controls, allowing SYSTEM-level file operations on paths controlled by a non-privileged user and enabling privilege escalation. This vulnerability affects Firefox < 138, Firefox ESR < 128.10, Firefox ESR < 115.23, Thunderbird < 138, and Thunderbird < 128.10.
CVE-2025-27516 3 Debian, Palletsprojects, Redhat 11 Debian Linux, Jinja, Ansible Automation Platform and 8 more 2025-11-03 8.8 High
Jinja is an extensible templating engine. Prior to 3.1.6, an oversight in how the Jinja sandboxed environment interacts with the |attr filter allows an attacker that controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to use the |attr filter to get a reference to a string's plain format method, bypassing the sandbox. After the fix, the |attr filter no longer bypasses the environment's attribute lookup. This vulnerability is fixed in 3.1.6.
CVE-2025-24495 1 Redhat 6 Enterprise Linux, Rhel Aus, Rhel E4s and 3 more 2025-11-03 5.6 Medium
Incorrect initialization of resource in the branch prediction unit for some Intel(R) Core™ Ultra Processors may allow an authenticated user to potentially enable information disclosure via local access.
CVE-2025-22126 2 Linux, Redhat 4 Linux Kernel, Enterprise Linux, Rhel E4s and 1 more 2025-11-03 7.8 High
In the Linux kernel, the following vulnerability has been resolved: md: fix mddev uaf while iterating all_mddevs list While iterating all_mddevs list from md_notify_reboot() and md_exit(), list_for_each_entry_safe is used, and this can race with deletint the next mddev, causing UAF: t1: spin_lock //list_for_each_entry_safe(mddev, n, ...) mddev_get(mddev1) // assume mddev2 is the next entry spin_unlock t2: //remove mddev2 ... mddev_free spin_lock list_del spin_unlock kfree(mddev2) mddev_put(mddev1) spin_lock //continue dereference mddev2->all_mddevs The old helper for_each_mddev() actually grab the reference of mddev2 while holding the lock, to prevent from being freed. This problem can be fixed the same way, however, the code will be complex. Hence switch to use list_for_each_entry, in this case mddev_put() can free the mddev1 and it's not safe as well. Refer to md_seq_show(), also factor out a helper mddev_put_locked() to fix this problem.
CVE-2025-21764 2 Linux, Redhat 6 Linux Kernel, Enterprise Linux, Rhel Aus and 3 more 2025-11-03 7.8 High
In the Linux kernel, the following vulnerability has been resolved: ndisc: use RCU protection in ndisc_alloc_skb() ndisc_alloc_skb() can be called without RTNL or RCU being held. Add RCU protection to avoid possible UAF.
CVE-2025-21756 2 Linux, Redhat 6 Linux Kernel, Enterprise Linux, Rhel Aus and 3 more 2025-11-03 7.8 High
In the Linux kernel, the following vulnerability has been resolved: vsock: Keep the binding until socket destruction Preserve sockets bindings; this includes both resulting from an explicit bind() and those implicitly bound through autobind during connect(). Prevents socket unbinding during a transport reassignment, which fixes a use-after-free: 1. vsock_create() (refcnt=1) calls vsock_insert_unbound() (refcnt=2) 2. transport->release() calls vsock_remove_bound() without checking if sk was bound and moved to bound list (refcnt=1) 3. vsock_bind() assumes sk is in unbound list and before __vsock_insert_bound(vsock_bound_sockets()) calls __vsock_remove_bound() which does: list_del_init(&vsk->bound_table); // nop sock_put(&vsk->sk); // refcnt=0 BUG: KASAN: slab-use-after-free in __vsock_bind+0x62e/0x730 Read of size 4 at addr ffff88816b46a74c by task a.out/2057 dump_stack_lvl+0x68/0x90 print_report+0x174/0x4f6 kasan_report+0xb9/0x190 __vsock_bind+0x62e/0x730 vsock_bind+0x97/0xe0 __sys_bind+0x154/0x1f0 __x64_sys_bind+0x6e/0xb0 do_syscall_64+0x93/0x1b0 entry_SYSCALL_64_after_hwframe+0x76/0x7e Allocated by task 2057: kasan_save_stack+0x1e/0x40 kasan_save_track+0x10/0x30 __kasan_slab_alloc+0x85/0x90 kmem_cache_alloc_noprof+0x131/0x450 sk_prot_alloc+0x5b/0x220 sk_alloc+0x2c/0x870 __vsock_create.constprop.0+0x2e/0xb60 vsock_create+0xe4/0x420 __sock_create+0x241/0x650 __sys_socket+0xf2/0x1a0 __x64_sys_socket+0x6e/0xb0 do_syscall_64+0x93/0x1b0 entry_SYSCALL_64_after_hwframe+0x76/0x7e Freed by task 2057: kasan_save_stack+0x1e/0x40 kasan_save_track+0x10/0x30 kasan_save_free_info+0x37/0x60 __kasan_slab_free+0x4b/0x70 kmem_cache_free+0x1a1/0x590 __sk_destruct+0x388/0x5a0 __vsock_bind+0x5e1/0x730 vsock_bind+0x97/0xe0 __sys_bind+0x154/0x1f0 __x64_sys_bind+0x6e/0xb0 do_syscall_64+0x93/0x1b0 entry_SYSCALL_64_after_hwframe+0x76/0x7e refcount_t: addition on 0; use-after-free. WARNING: CPU: 7 PID: 2057 at lib/refcount.c:25 refcount_warn_saturate+0xce/0x150 RIP: 0010:refcount_warn_saturate+0xce/0x150 __vsock_bind+0x66d/0x730 vsock_bind+0x97/0xe0 __sys_bind+0x154/0x1f0 __x64_sys_bind+0x6e/0xb0 do_syscall_64+0x93/0x1b0 entry_SYSCALL_64_after_hwframe+0x76/0x7e refcount_t: underflow; use-after-free. WARNING: CPU: 7 PID: 2057 at lib/refcount.c:28 refcount_warn_saturate+0xee/0x150 RIP: 0010:refcount_warn_saturate+0xee/0x150 vsock_remove_bound+0x187/0x1e0 __vsock_release+0x383/0x4a0 vsock_release+0x90/0x120 __sock_release+0xa3/0x250 sock_close+0x14/0x20 __fput+0x359/0xa80 task_work_run+0x107/0x1d0 do_exit+0x847/0x2560 do_group_exit+0xb8/0x250 __x64_sys_exit_group+0x3a/0x50 x64_sys_call+0xfec/0x14f0 do_syscall_64+0x93/0x1b0 entry_SYSCALL_64_after_hwframe+0x76/0x7e
CVE-2025-21587 2 Oracle, Redhat 12 Graalvm, Graalvm For Jdk, Jdk and 9 more 2025-11-03 7.4 High
Vulnerability in the Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: JSSE). Supported versions that are affected are Oracle Java SE:8u441, 8u441-perf, 11.0.26, 17.0.14, 21.0.6, 24; Oracle GraalVM for JDK:17.0.14, 21.0.6, 24; Oracle GraalVM Enterprise Edition:20.3.17 and 21.3.13. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized creation, deletion or modification access to critical data or all Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition accessible data as well as unauthorized access to critical data or complete access to all Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition accessible data. Note: This vulnerability can be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. This vulnerability also applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. CVSS 3.1 Base Score 7.4 (Confidentiality and Integrity impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:N).
CVE-2025-20623 1 Redhat 6 Enterprise Linux, Rhel Aus, Rhel E4s and 3 more 2025-11-03 5.6 Medium
Exposure of sensitive information caused by shared microarchitectural predictor state that influences transient execution for some Intel(R) Core™ processors (10th Generation) may allow an authenticated user to potentially enable information disclosure via local access.
CVE-2025-20012 1 Redhat 6 Enterprise Linux, Rhel Aus, Rhel E4s and 3 more 2025-11-03 4.9 Medium
Incorrect behavior order for some Intel(R) Core™ Ultra Processors may allow an unauthenticated user to potentially enable information disclosure via physical access.
CVE-2025-1080 1 Redhat 6 Enterprise Linux, Rhel Aus, Rhel E4s and 3 more 2025-11-03 7.6 High
LibreOffice supports Office URI Schemes to enable browser integration of LibreOffice with MS SharePoint server. An additional scheme 'vnd.libreoffice.command' specific to LibreOffice was added. In the affected versions of LibreOffice a link in a browser using that scheme could be constructed with an embedded inner URL that when passed to LibreOffice could call internal macros with arbitrary arguments. This issue affects LibreOffice: from 24.8 before < 24.8.5, from 25.2 before < 25.2.1.
CVE-2024-56326 2 Palletsprojects, Redhat 15 Jinja, Ansible Automation Platform, Discovery and 12 more 2025-11-03 7.8 High
Jinja is an extensible templating engine. Prior to 3.1.5, An oversight in how the Jinja sandboxed environment detects calls to str.format allows an attacker that controls the content of a template to execute arbitrary Python code. To exploit the vulnerability, an attacker needs to control the content of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates. Jinja's sandbox does catch calls to str.format and ensures they don't escape the sandbox. However, it's possible to store a reference to a malicious string's format method, then pass that to a filter that calls it. No such filters are built-in to Jinja, but could be present through custom filters in an application. After the fix, such indirect calls are also handled by the sandbox. This vulnerability is fixed in 3.1.5.
CVE-2024-54551 2 Apple, Redhat 13 Ipados, Iphone Os, Macos and 10 more 2025-11-03 7.5 High
The issue was addressed with improved memory handling. This issue is fixed in watchOS 10.6, tvOS 17.6, Safari 17.6, macOS Sonoma 14.6, visionOS 1.3, iOS 17.6 and iPadOS 17.6. Processing web content may lead to a denial-of-service.
CVE-2024-54467 2 Apple, Redhat 12 Ipados, Iphone Os, Macos and 9 more 2025-11-03 6.5 Medium
A cookie management issue was addressed with improved state management. This issue is fixed in watchOS 11, macOS Sequoia 15, Safari 18, visionOS 2, iOS 18 and iPadOS 18, tvOS 18. A malicious website may exfiltrate data cross-origin.
CVE-2024-45332 1 Redhat 6 Enterprise Linux, Rhel Aus, Rhel E4s and 3 more 2025-11-03 5.6 Medium
Exposure of sensitive information caused by shared microarchitectural predictor state that influences transient execution in the indirect branch predictors for some Intel(R) Processors may allow an authenticated user to potentially enable information disclosure via local access.
CVE-2024-44192 2 Apple, Redhat 13 Iphone Os, Macos, Safari and 10 more 2025-11-03 6.5 Medium
The issue was addressed with improved checks. This issue is fixed in watchOS 11, macOS Sequoia 15, Safari 18, visionOS 2, iOS 18 and iPadOS 18, tvOS 18. Processing maliciously crafted web content may lead to an unexpected process crash.
CVE-2024-43420 1 Redhat 6 Enterprise Linux, Rhel Aus, Rhel E4s and 3 more 2025-11-03 5.6 Medium
Exposure of sensitive information caused by shared microarchitectural predictor state that influences transient execution for some Intel Atom(R) processors may allow an authenticated user to potentially enable information disclosure via local access.
CVE-2024-38796 1 Redhat 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more 2025-11-03 5.9 Medium
EDK2 contains a vulnerability in the PeCoffLoaderRelocateImage(). An Attacker may cause memory corruption due to an overflow via an adjacent network. A successful exploit of this vulnerability may lead to a loss of Confidentiality, Integrity, and/or Availability.
CVE-2024-38541 2 Linux, Redhat 3 Linux Kernel, Enterprise Linux, Rhel Eus 2025-11-03 9.8 Critical
In the Linux kernel, the following vulnerability has been resolved: of: module: add buffer overflow check in of_modalias() In of_modalias(), if the buffer happens to be too small even for the 1st snprintf() call, the len parameter will become negative and str parameter (if not NULL initially) will point beyond the buffer's end. Add the buffer overflow check after the 1st snprintf() call and fix such check after the strlen() call (accounting for the terminating NUL char).