Filtered by vendor Vllm
Subscriptions
Filtered by product Vllm
Subscriptions
Total
9 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2025-24357 | 1 Vllm | 1 Vllm | 2025-06-27 | 7.5 High |
vLLM is a library for LLM inference and serving. vllm/model_executor/weight_utils.py implements hf_model_weights_iterator to load the model checkpoint, which is downloaded from huggingface. It uses the torch.load function and the weights_only parameter defaults to False. When torch.load loads malicious pickle data, it will execute arbitrary code during unpickling. This vulnerability is fixed in v0.7.0. | ||||
CVE-2025-46570 | 1 Vllm | 1 Vllm | 2025-06-24 | 2.6 Low |
vLLM is an inference and serving engine for large language models (LLMs). Prior to version 0.9.0, when a new prompt is processed, if the PageAttention mechanism finds a matching prefix chunk, the prefill process speeds up, which is reflected in the TTFT (Time to First Token). These timing differences caused by matching chunks are significant enough to be recognized and exploited. This issue has been patched in version 0.9.0. | ||||
CVE-2025-46722 | 1 Vllm | 1 Vllm | 2025-06-24 | 4.2 Medium |
vLLM is an inference and serving engine for large language models (LLMs). In versions starting from 0.7.0 to before 0.9.0, in the file vllm/multimodal/hasher.py, the MultiModalHasher class has a security and data integrity issue in its image hashing method. Currently, it serializes PIL.Image.Image objects using only obj.tobytes(), which returns only the raw pixel data, without including metadata such as the image’s shape (width, height, mode). As a result, two images of different sizes (e.g., 30x100 and 100x30) with the same pixel byte sequence could generate the same hash value. This may lead to hash collisions, incorrect cache hits, and even data leakage or security risks. This issue has been patched in version 0.9.0. | ||||
CVE-2025-48942 | 1 Vllm | 1 Vllm | 2025-06-24 | 6.5 Medium |
vLLM is an inference and serving engine for large language models (LLMs). In versions 0.8.0 up to but excluding 0.9.0, hitting the /v1/completions API with a invalid json_schema as a Guided Param kills the vllm server. This vulnerability is similar GHSA-9hcf-v7m4-6m2j/CVE-2025-48943, but for regex instead of a JSON schema. Version 0.9.0 fixes the issue. | ||||
CVE-2025-48943 | 1 Vllm | 1 Vllm | 2025-06-24 | 6.5 Medium |
vLLM is an inference and serving engine for large language models (LLMs). Version 0.8.0 up to but excluding 0.9.0 have a Denial of Service (ReDoS) that causes the vLLM server to crash if an invalid regex was provided while using structured output. This vulnerability is similar to GHSA-6qc9-v4r8-22xg/CVE-2025-48942, but for regex instead of a JSON schema. Version 0.9.0 fixes the issue. | ||||
CVE-2025-48887 | 1 Vllm | 1 Vllm | 2025-06-19 | 6.5 Medium |
vLLM, an inference and serving engine for large language models (LLMs), has a Regular Expression Denial of Service (ReDoS) vulnerability in the file `vllm/entrypoints/openai/tool_parsers/pythonic_tool_parser.py` of versions 0.6.4 up to but excluding 0.9.0. The root cause is the use of a highly complex and nested regular expression for tool call detection, which can be exploited by an attacker to cause severe performance degradation or make the service unavailable. The pattern contains multiple nested quantifiers, optional groups, and inner repetitions which make it vulnerable to catastrophic backtracking. Version 0.9.0 contains a patch for the issue. | ||||
CVE-2025-46560 | 1 Vllm | 1 Vllm | 2025-05-28 | 6.5 Medium |
vLLM is a high-throughput and memory-efficient inference and serving engine for LLMs. Versions starting from 0.8.0 and prior to 0.8.5 are affected by a critical performance vulnerability in the input preprocessing logic of the multimodal tokenizer. The code dynamically replaces placeholder tokens (e.g., <|audio_|>, <|image_|>) with repeated tokens based on precomputed lengths. Due to inefficient list concatenation operations, the algorithm exhibits quadratic time complexity (O(n²)), allowing malicious actors to trigger resource exhaustion via specially crafted inputs. This issue has been patched in version 0.8.5. | ||||
CVE-2025-32444 | 1 Vllm | 1 Vllm | 2025-05-28 | 10 Critical |
vLLM is a high-throughput and memory-efficient inference and serving engine for LLMs. Versions starting from 0.6.5 and prior to 0.8.5, having vLLM integration with mooncake, are vulnerable to remote code execution due to using pickle based serialization over unsecured ZeroMQ sockets. The vulnerable sockets were set to listen on all network interfaces, increasing the likelihood that an attacker is able to reach the vulnerable ZeroMQ sockets to carry out an attack. vLLM instances that do not make use of the mooncake integration are not vulnerable. This issue has been patched in version 0.8.5. | ||||
CVE-2025-30202 | 1 Vllm | 1 Vllm | 2025-05-14 | 7.5 High |
vLLM is a high-throughput and memory-efficient inference and serving engine for LLMs. Versions starting from 0.5.2 and prior to 0.8.5 are vulnerable to denial of service and data exposure via ZeroMQ on multi-node vLLM deployment. In a multi-node vLLM deployment, vLLM uses ZeroMQ for some multi-node communication purposes. The primary vLLM host opens an XPUB ZeroMQ socket and binds it to ALL interfaces. While the socket is always opened for a multi-node deployment, it is only used when doing tensor parallelism across multiple hosts. Any client with network access to this host can connect to this XPUB socket unless its port is blocked by a firewall. Once connected, these arbitrary clients will receive all of the same data broadcasted to all of the secondary vLLM hosts. This data is internal vLLM state information that is not useful to an attacker. By potentially connecting to this socket many times and not reading data published to them, an attacker can also cause a denial of service by slowing down or potentially blocking the publisher. This issue has been patched in version 0.8.5. |
Page 1 of 1.