Filtered by vendor Fedoraproject
Subscriptions
Filtered by product Fedora
Subscriptions
Total
5362 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2023-4911 | 6 Canonical, Debian, Fedoraproject and 3 more | 40 Ubuntu Linux, Debian Linux, Fedora and 37 more | 2026-01-08 | 7.8 High |
| A buffer overflow was discovered in the GNU C Library's dynamic loader ld.so while processing the GLIBC_TUNABLES environment variable. This issue could allow a local attacker to use maliciously crafted GLIBC_TUNABLES environment variables when launching binaries with SUID permission to execute code with elevated privileges. | ||||
| CVE-2024-22049 | 4 Debian, Fedoraproject, Jnunemaker and 1 more | 4 Debian Linux, Fedora, Httparty and 1 more | 2026-01-07 | 5.3 Medium |
| httparty before 0.21.0 is vulnerable to an assumed-immutable web parameter vulnerability. A remote and unauthenticated attacker can provide a crafted filename parameter during multipart/form-data uploads which could result in attacker controlled filenames being written. | ||||
| CVE-2023-51791 | 2 Fedoraproject, Ffmpeg | 2 Fedora, Ffmpeg | 2026-01-07 | 7.8 High |
| Buffer Overflow vulenrability in Ffmpeg v.N113007-g8d24a28d06 allows a local attacker to execute arbitrary code via the libavcodec/jpegxl_parser.c in gen_alias_map. | ||||
| CVE-2023-51795 | 2 Fedoraproject, Ffmpeg | 2 Fedora, Ffmpeg | 2026-01-07 | 8 High |
| Buffer Overflow vulnerability in Ffmpeg v.N113007-g8d24a28d06 allows a local attacker to execute arbitrary code via the libavfilter/avf_showspectrum.c:1789:52 component in showspectrumpic_request_frame | ||||
| CVE-2023-51796 | 2 Fedoraproject, Ffmpeg | 2 Fedora, Ffmpeg | 2026-01-07 | 3.6 Low |
| Buffer Overflow vulnerability in Ffmpeg v.N113007-g8d24a28d06 allows a local attacker to execute arbitrary code via the libavfilter/f_reverse.c:269:26 in areverse_request_frame. | ||||
| CVE-2023-51797 | 2 Fedoraproject, Ffmpeg | 2 Fedora, Ffmpeg | 2026-01-07 | 6.7 Medium |
| Buffer Overflow vulnerability in Ffmpeg v.N113007-g8d24a28d06 allows a local attacker to execute arbitrary code via the libavfilter/avf_showwaves.c:722:24 in showwaves_filter_frame | ||||
| CVE-2024-32004 | 5 Debian, Fedoraproject, Git and 2 more | 9 Debian Linux, Fedora, Git and 6 more | 2026-01-06 | 8.2 High |
| Git is a revision control system. Prior to versions 2.45.1, 2.44.1, 2.43.4, 2.42.2, 2.41.1, 2.40.2, and 2.39.4, an attacker can prepare a local repository in such a way that, when cloned, will execute arbitrary code during the operation. The problem has been patched in versions 2.45.1, 2.44.1, 2.43.4, 2.42.2, 2.41.1, 2.40.2, and 2.39.4. As a workaround, avoid cloning repositories from untrusted sources. | ||||
| CVE-2024-32020 | 4 Fedoraproject, Git, Git-scm and 1 more | 5 Fedora, Git, Git and 2 more | 2026-01-06 | 3.9 Low |
| Git is a revision control system. Prior to versions 2.45.1, 2.44.1, 2.43.4, 2.42.2, 2.41.1, 2.40.2, and 2.39.4, local clones may end up hardlinking files into the target repository's object database when source and target repository reside on the same disk. If the source repository is owned by a different user, then those hardlinked files may be rewritten at any point in time by the untrusted user. Cloning local repositories will cause Git to either copy or hardlink files of the source repository into the target repository. This significantly speeds up such local clones compared to doing a "proper" clone and saves both disk space and compute time. When cloning a repository located on the same disk that is owned by a different user than the current user we also end up creating such hardlinks. These files will continue to be owned and controlled by the potentially-untrusted user and can be rewritten by them at will in the future. The problem has been patched in versions 2.45.1, 2.44.1, 2.43.4, 2.42.2, 2.41.1, 2.40.2, and 2.39.4. | ||||
| CVE-2024-32021 | 5 Debian, Fedoraproject, Git and 2 more | 6 Debian Linux, Fedora, Git and 3 more | 2026-01-05 | 3.9 Low |
| Git is a revision control system. Prior to versions 2.45.1, 2.44.1, 2.43.4, 2.42.2, 2.41.1, 2.40.2, and 2.39.4, when cloning a local source repository that contains symlinks via the filesystem, Git may create hardlinks to arbitrary user-readable files on the same filesystem as the target repository in the `objects/` directory. Cloning a local repository over the filesystem may creating hardlinks to arbitrary user-owned files on the same filesystem in the target Git repository's `objects/` directory. When cloning a repository over the filesystem (without explicitly specifying the `file://` protocol or `--no-local`), the optimizations for local cloning will be used, which include attempting to hard link the object files instead of copying them. While the code includes checks against symbolic links in the source repository, which were added during the fix for CVE-2022-39253, these checks can still be raced because the hard link operation ultimately follows symlinks. If the object on the filesystem appears as a file during the check, and then a symlink during the operation, this will allow the adversary to bypass the check and create hardlinks in the destination objects directory to arbitrary, user-readable files. The problem has been patched in versions 2.45.1, 2.44.1, 2.43.4, 2.42.2, 2.41.1, 2.40.2, and 2.39.4. | ||||
| CVE-2023-5349 | 3 Fedoraproject, Redhat, Rmagick | 3 Fedora, Red Hat 3scale Amp, Rmagick | 2026-01-05 | 5.3 Medium |
| A memory leak flaw was found in ruby-magick, an interface between Ruby and ImageMagick. This issue can lead to a denial of service (DOS) by memory exhaustion. | ||||
| CVE-2024-32465 | 5 Debian, Fedoraproject, Git and 2 more | 6 Debian Linux, Fedora, Git and 3 more | 2026-01-05 | 7.4 High |
| Git is a revision control system. The Git project recommends to avoid working in untrusted repositories, and instead to clone it first with `git clone --no-local` to obtain a clean copy. Git has specific protections to make that a safe operation even with an untrusted source repository, but vulnerabilities allow those protections to be bypassed. In the context of cloning local repositories owned by other users, this vulnerability has been covered in CVE-2024-32004. But there are circumstances where the fixes for CVE-2024-32004 are not enough: For example, when obtaining a `.zip` file containing a full copy of a Git repository, it should not be trusted by default to be safe, as e.g. hooks could be configured to run within the context of that repository. The problem has been patched in versions 2.45.1, 2.44.1, 2.43.4, 2.42.2, 2.41.1, 2.40.2, and 2.39.4. As a workaround, avoid using Git in repositories that have been obtained via archives from untrusted sources. | ||||
| CVE-2023-46842 | 2 Fedoraproject, Xen | 2 Fedora, Xen | 2026-01-05 | 6.5 Medium |
| Unlike 32-bit PV guests, HVM guests may switch freely between 64-bit and other modes. This in particular means that they may set registers used to pass 32-bit-mode hypercall arguments to values outside of the range 32-bit code would be able to set them to. When processing of hypercalls takes a considerable amount of time, the hypervisor may choose to invoke a hypercall continuation. Doing so involves putting (perhaps updated) hypercall arguments in respective registers. For guests not running in 64-bit mode this further involves a certain amount of translation of the values. Unfortunately internal sanity checking of these translated values assumes high halves of registers to always be clear when invoking a hypercall. When this is found not to be the case, it triggers a consistency check in the hypervisor and causes a crash. | ||||
| CVE-2024-31142 | 2 Fedoraproject, Xen | 2 Fedora, Xen | 2026-01-05 | 7.5 High |
| Because of a logical error in XSA-407 (Branch Type Confusion), the mitigation is not applied properly when it is intended to be used. XSA-434 (Speculative Return Stack Overflow) uses the same infrastructure, so is equally impacted. For more details, see: https://xenbits.xen.org/xsa/advisory-407.html https://xenbits.xen.org/xsa/advisory-434.html | ||||
| CVE-2024-24576 | 3 Fedoraproject, Microsoft, Rust-lang | 3 Fedora, Windows, Rust | 2026-01-05 | 10 Critical |
| Rust is a programming language. The Rust Security Response WG was notified that the Rust standard library prior to version 1.77.2 did not properly escape arguments when invoking batch files (with the `bat` and `cmd` extensions) on Windows using the `Command`. An attacker able to control the arguments passed to the spawned process could execute arbitrary shell commands by bypassing the escaping. The severity of this vulnerability is critical for those who invoke batch files on Windows with untrusted arguments. No other platform or use is affected. The `Command::arg` and `Command::args` APIs state in their documentation that the arguments will be passed to the spawned process as-is, regardless of the content of the arguments, and will not be evaluated by a shell. This means it should be safe to pass untrusted input as an argument. On Windows, the implementation of this is more complex than other platforms, because the Windows API only provides a single string containing all the arguments to the spawned process, and it's up to the spawned process to split them. Most programs use the standard C run-time argv, which in practice results in a mostly consistent way arguments are splitted. One exception though is `cmd.exe` (used among other things to execute batch files), which has its own argument splitting logic. That forces the standard library to implement custom escaping for arguments passed to batch files. Unfortunately it was reported that our escaping logic was not thorough enough, and it was possible to pass malicious arguments that would result in arbitrary shell execution. Due to the complexity of `cmd.exe`, we didn't identify a solution that would correctly escape arguments in all cases. To maintain our API guarantees, we improved the robustness of the escaping code, and changed the `Command` API to return an `InvalidInput` error when it cannot safely escape an argument. This error will be emitted when spawning the process. The fix is included in Rust 1.77.2. Note that the new escaping logic for batch files errs on the conservative side, and could reject valid arguments. Those who implement the escaping themselves or only handle trusted inputs on Windows can also use the `CommandExt::raw_arg` method to bypass the standard library's escaping logic. | ||||
| CVE-2024-35949 | 2 Fedoraproject, Linux | 2 Fedora, Linux Kernel | 2026-01-05 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: btrfs: make sure that WRITTEN is set on all metadata blocks We previously would call btrfs_check_leaf() if we had the check integrity code enabled, which meant that we could only run the extended leaf checks if we had WRITTEN set on the header flags. This leaves a gap in our checking, because we could end up with corruption on disk where WRITTEN isn't set on the leaf, and then the extended leaf checks don't get run which we rely on to validate all of the item pointers to make sure we don't access memory outside of the extent buffer. However, since 732fab95abe2 ("btrfs: check-integrity: remove CONFIG_BTRFS_FS_CHECK_INTEGRITY option") we no longer call btrfs_check_leaf() from btrfs_mark_buffer_dirty(), which means we only ever call it on blocks that are being written out, and thus have WRITTEN set, or that are being read in, which should have WRITTEN set. Add checks to make sure we have WRITTEN set appropriately, and then make sure __btrfs_check_leaf() always does the item checking. This will protect us from file systems that have been corrupted and no longer have WRITTEN set on some of the blocks. This was hit on a crafted image tweaking the WRITTEN bit and reported by KASAN as out-of-bound access in the eb accessors. The example is a dir item at the end of an eb. [2.042] BTRFS warning (device loop1): bad eb member start: ptr 0x3fff start 30572544 member offset 16410 size 2 [2.040] general protection fault, probably for non-canonical address 0xe0009d1000000003: 0000 [#1] PREEMPT SMP KASAN NOPTI [2.537] KASAN: maybe wild-memory-access in range [0x0005088000000018-0x000508800000001f] [2.729] CPU: 0 PID: 2587 Comm: mount Not tainted 6.8.2 #1 [2.729] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 [2.621] RIP: 0010:btrfs_get_16+0x34b/0x6d0 [2.621] RSP: 0018:ffff88810871fab8 EFLAGS: 00000206 [2.621] RAX: 0000a11000000003 RBX: ffff888104ff8720 RCX: ffff88811b2288c0 [2.621] RDX: dffffc0000000000 RSI: ffffffff81dd8aca RDI: ffff88810871f748 [2.621] RBP: 000000000000401a R08: 0000000000000001 R09: ffffed10210e3ee9 [2.621] R10: ffff88810871f74f R11: 205d323430333737 R12: 000000000000001a [2.621] R13: 000508800000001a R14: 1ffff110210e3f5d R15: ffffffff850011e8 [2.621] FS: 00007f56ea275840(0000) GS:ffff88811b200000(0000) knlGS:0000000000000000 [2.621] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [2.621] CR2: 00007febd13b75c0 CR3: 000000010bb50000 CR4: 00000000000006f0 [2.621] Call Trace: [2.621] <TASK> [2.621] ? show_regs+0x74/0x80 [2.621] ? die_addr+0x46/0xc0 [2.621] ? exc_general_protection+0x161/0x2a0 [2.621] ? asm_exc_general_protection+0x26/0x30 [2.621] ? btrfs_get_16+0x33a/0x6d0 [2.621] ? btrfs_get_16+0x34b/0x6d0 [2.621] ? btrfs_get_16+0x33a/0x6d0 [2.621] ? __pfx_btrfs_get_16+0x10/0x10 [2.621] ? __pfx_mutex_unlock+0x10/0x10 [2.621] btrfs_match_dir_item_name+0x101/0x1a0 [2.621] btrfs_lookup_dir_item+0x1f3/0x280 [2.621] ? __pfx_btrfs_lookup_dir_item+0x10/0x10 [2.621] btrfs_get_tree+0xd25/0x1910 [ copy more details from report ] | ||||
| CVE-2024-35947 | 4 Debian, Fedoraproject, Linux and 1 more | 5 Debian Linux, Fedora, Linux Kernel and 2 more | 2026-01-05 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: dyndbg: fix old BUG_ON in >control parser Fix a BUG_ON from 2009. Even if it looks "unreachable" (I didn't really look), lets make sure by removing it, doing pr_err and return -EINVAL instead. | ||||
| CVE-2022-2068 | 7 Broadcom, Debian, Fedoraproject and 4 more | 49 Sannav, Debian Linux, Fedora and 46 more | 2025-12-30 | 9.8 Critical |
| In addition to the c_rehash shell command injection identified in CVE-2022-1292, further circumstances where the c_rehash script does not properly sanitise shell metacharacters to prevent command injection were found by code review. When the CVE-2022-1292 was fixed it was not discovered that there are other places in the script where the file names of certificates being hashed were possibly passed to a command executed through the shell. This script is distributed by some operating systems in a manner where it is automatically executed. On such operating systems, an attacker could execute arbitrary commands with the privileges of the script. Use of the c_rehash script is considered obsolete and should be replaced by the OpenSSL rehash command line tool. Fixed in OpenSSL 3.0.4 (Affected 3.0.0,3.0.1,3.0.2,3.0.3). Fixed in OpenSSL 1.1.1p (Affected 1.1.1-1.1.1o). Fixed in OpenSSL 1.0.2zf (Affected 1.0.2-1.0.2ze). | ||||
| CVE-2022-1292 | 7 Debian, Fedoraproject, Netapp and 4 more | 58 Debian Linux, Fedora, A250 and 55 more | 2025-12-30 | 9.8 Critical |
| The c_rehash script does not properly sanitise shell metacharacters to prevent command injection. This script is distributed by some operating systems in a manner where it is automatically executed. On such operating systems, an attacker could execute arbitrary commands with the privileges of the script. Use of the c_rehash script is considered obsolete and should be replaced by the OpenSSL rehash command line tool. Fixed in OpenSSL 3.0.3 (Affected 3.0.0,3.0.1,3.0.2). Fixed in OpenSSL 1.1.1o (Affected 1.1.1-1.1.1n). Fixed in OpenSSL 1.0.2ze (Affected 1.0.2-1.0.2zd). | ||||
| CVE-2023-50868 | 6 Debian, Fedoraproject, Isc and 3 more | 19 Debian Linux, Fedora, Bind and 16 more | 2025-12-23 | 7.5 High |
| The Closest Encloser Proof aspect of the DNS protocol (in RFC 5155 when RFC 9276 guidance is skipped) allows remote attackers to cause a denial of service (CPU consumption for SHA-1 computations) via DNSSEC responses in a random subdomain attack, aka the "NSEC3" issue. The RFC 5155 specification implies that an algorithm must perform thousands of iterations of a hash function in certain situations. | ||||
| CVE-2024-26922 | 4 Debian, Fedoraproject, Linux and 1 more | 4 Debian Linux, Fedora, Linux Kernel and 1 more | 2025-12-23 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: validate the parameters of bo mapping operations more clearly Verify the parameters of amdgpu_vm_bo_(map/replace_map/clearing_mappings) in one common place. | ||||