Filtered by vendor Linux
Subscriptions
Filtered by product Linux Kernel
Subscriptions
Total
14827 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2023-52996 | 1 Linux | 1 Linux Kernel | 2025-10-30 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: ipv4: prevent potential spectre v1 gadget in fib_metrics_match() if (!type) continue; if (type > RTAX_MAX) return false; ... fi_val = fi->fib_metrics->metrics[type - 1]; @type being used as an array index, we need to prevent cpu speculation or risk leaking kernel memory content. | ||||
| CVE-2023-52997 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-10-30 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: ipv4: prevent potential spectre v1 gadget in ip_metrics_convert() if (!type) continue; if (type > RTAX_MAX) return -EINVAL; ... metrics[type - 1] = val; @type being used as an array index, we need to prevent cpu speculation or risk leaking kernel memory content. | ||||
| CVE-2023-53000 | 1 Linux | 1 Linux Kernel | 2025-10-30 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: netlink: prevent potential spectre v1 gadgets Most netlink attributes are parsed and validated from __nla_validate_parse() or validate_nla() u16 type = nla_type(nla); if (type == 0 || type > maxtype) { /* error or continue */ } @type is then used as an array index and can be used as a Spectre v1 gadget. array_index_nospec() can be used to prevent leaking content of kernel memory to malicious users. This should take care of vast majority of netlink uses, but an audit is needed to take care of others where validation is not yet centralized in core netlink functions. | ||||
| CVE-2023-53004 | 1 Linux | 1 Linux Kernel | 2025-10-30 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: ovl: fix tmpfile leak Missed an error cleanup. | ||||
| CVE-2023-53006 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-10-30 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: cifs: Fix oops due to uncleared server->smbd_conn in reconnect In smbd_destroy(), clear the server->smbd_conn pointer after freeing the smbd_connection struct that it points to so that reconnection doesn't get confused. | ||||
| CVE-2023-53007 | 1 Linux | 1 Linux Kernel | 2025-10-30 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: tracing: Make sure trace_printk() can output as soon as it can be used Currently trace_printk() can be used as soon as early_trace_init() is called from start_kernel(). But if a crash happens, and "ftrace_dump_on_oops" is set on the kernel command line, all you get will be: [ 0.456075] <idle>-0 0dN.2. 347519us : Unknown type 6 [ 0.456075] <idle>-0 0dN.2. 353141us : Unknown type 6 [ 0.456075] <idle>-0 0dN.2. 358684us : Unknown type 6 This is because the trace_printk() event (type 6) hasn't been registered yet. That gets done via an early_initcall(), which may be early, but not early enough. Instead of registering the trace_printk() event (and other ftrace events, which are not trace events) via an early_initcall(), have them registered at the same time that trace_printk() can be used. This way, if there is a crash before early_initcall(), then the trace_printk()s will actually be useful. | ||||
| CVE-2023-53009 | 1 Linux | 1 Linux Kernel | 2025-10-30 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: drm/amdkfd: Add sync after creating vram bo There will be data corruption on vram allocated by svm if the initialization is not complete and application is writting on the memory. Adding sync to wait for the initialization completion is to resolve this issue. | ||||
| CVE-2023-53010 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-10-30 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: bnxt: Do not read past the end of test names Test names were being concatenated based on a offset beyond the end of the first name, which tripped the buffer overflow detection logic: detected buffer overflow in strnlen [...] Call Trace: bnxt_ethtool_init.cold+0x18/0x18 Refactor struct hwrm_selftest_qlist_output to use an actual array, and adjust the concatenation to use snprintf() rather than a series of strncat() calls. | ||||
| CVE-2023-53012 | 1 Linux | 1 Linux Kernel | 2025-10-30 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: thermal: core: call put_device() only after device_register() fails put_device() shouldn't be called before a prior call to device_register(). __thermal_cooling_device_register() doesn't follow that properly and needs fixing. Also thermal_cooling_device_destroy_sysfs() is getting called unnecessarily on few error paths. Fix all this by placing the calls at the right place. Based on initial work done by Caleb Connolly. | ||||
| CVE-2023-53019 | 1 Linux | 1 Linux Kernel | 2025-10-30 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: net: mdio: validate parameter addr in mdiobus_get_phy() The caller may pass any value as addr, what may result in an out-of-bounds access to array mdio_map. One existing case is stmmac_init_phy() that may pass -1 as addr. Therefore validate addr before using it. | ||||
| CVE-2025-21872 | 1 Linux | 1 Linux Kernel | 2025-10-30 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: efi: Don't map the entire mokvar table to determine its size Currently, when validating the mokvar table, we (re)map the entire table on each iteration of the loop, adding space as we discover new entries. If the table grows over a certain size, this fails due to limitations of early_memmap(), and we get a failure and traceback: ------------[ cut here ]------------ WARNING: CPU: 0 PID: 0 at mm/early_ioremap.c:139 __early_ioremap+0xef/0x220 ... Call Trace: <TASK> ? __early_ioremap+0xef/0x220 ? __warn.cold+0x93/0xfa ? __early_ioremap+0xef/0x220 ? report_bug+0xff/0x140 ? early_fixup_exception+0x5d/0xb0 ? early_idt_handler_common+0x2f/0x3a ? __early_ioremap+0xef/0x220 ? efi_mokvar_table_init+0xce/0x1d0 ? setup_arch+0x864/0xc10 ? start_kernel+0x6b/0xa10 ? x86_64_start_reservations+0x24/0x30 ? x86_64_start_kernel+0xed/0xf0 ? common_startup_64+0x13e/0x141 </TASK> ---[ end trace 0000000000000000 ]--- mokvar: Failed to map EFI MOKvar config table pa=0x7c4c3000, size=265187. Mapping the entire structure isn't actually necessary, as we don't ever need more than one entry header mapped at once. Changes efi_mokvar_table_init() to only map each entry header, not the entire table, when determining the table size. Since we're not mapping any data past the variable name, it also changes the code to enforce that each variable name is NUL terminated, rather than attempting to verify it in place. | ||||
| CVE-2025-21873 | 1 Linux | 1 Linux Kernel | 2025-10-30 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: scsi: ufs: core: bsg: Fix crash when arpmb command fails If the device doesn't support arpmb we'll crash due to copying user data in bsg_transport_sg_io_fn(). In the case where ufs_bsg_exec_advanced_rpmb_req() returns an error, do not set the job's reply_len. Memory crash backtrace: 3,1290,531166405,-;ufshcd 0000:00:12.5: ARPMB OP failed: error code -22 4,1308,531166555,-;Call Trace: 4,1309,531166559,-; <TASK> 4,1310,531166565,-; ? show_regs+0x6d/0x80 4,1311,531166575,-; ? die+0x37/0xa0 4,1312,531166583,-; ? do_trap+0xd4/0xf0 4,1313,531166593,-; ? do_error_trap+0x71/0xb0 4,1314,531166601,-; ? usercopy_abort+0x6c/0x80 4,1315,531166610,-; ? exc_invalid_op+0x52/0x80 4,1316,531166622,-; ? usercopy_abort+0x6c/0x80 4,1317,531166630,-; ? asm_exc_invalid_op+0x1b/0x20 4,1318,531166643,-; ? usercopy_abort+0x6c/0x80 4,1319,531166652,-; __check_heap_object+0xe3/0x120 4,1320,531166661,-; check_heap_object+0x185/0x1d0 4,1321,531166670,-; __check_object_size.part.0+0x72/0x150 4,1322,531166679,-; __check_object_size+0x23/0x30 4,1323,531166688,-; bsg_transport_sg_io_fn+0x314/0x3b0 | ||||
| CVE-2025-21874 | 1 Linux | 1 Linux Kernel | 2025-10-30 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: dm-integrity: Avoid divide by zero in table status in Inline mode In Inline mode, the journal is unused, and journal_sectors is zero. Calculating the journal watermark requires dividing by journal_sectors, which should be done only if the journal is configured. Otherwise, a simple table query (dmsetup table) can cause OOPS. This bug did not show on some systems, perhaps only due to compiler optimization. On my 32-bit testing machine, this reliably crashes with the following: : Oops: divide error: 0000 [#1] PREEMPT SMP : CPU: 0 UID: 0 PID: 2450 Comm: dmsetup Not tainted 6.14.0-rc2+ #959 : EIP: dm_integrity_status+0x2f8/0xab0 [dm_integrity] ... | ||||
| CVE-2025-21875 | 1 Linux | 1 Linux Kernel | 2025-10-30 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: mptcp: always handle address removal under msk socket lock Syzkaller reported a lockdep splat in the PM control path: WARNING: CPU: 0 PID: 6693 at ./include/net/sock.h:1711 sock_owned_by_me include/net/sock.h:1711 [inline] WARNING: CPU: 0 PID: 6693 at ./include/net/sock.h:1711 msk_owned_by_me net/mptcp/protocol.h:363 [inline] WARNING: CPU: 0 PID: 6693 at ./include/net/sock.h:1711 mptcp_pm_nl_addr_send_ack+0x57c/0x610 net/mptcp/pm_netlink.c:788 Modules linked in: CPU: 0 UID: 0 PID: 6693 Comm: syz.0.205 Not tainted 6.14.0-rc2-syzkaller-00303-gad1b832bf1cf #0 Hardware name: Google Compute Engine/Google Compute Engine, BIOS Google 12/27/2024 RIP: 0010:sock_owned_by_me include/net/sock.h:1711 [inline] RIP: 0010:msk_owned_by_me net/mptcp/protocol.h:363 [inline] RIP: 0010:mptcp_pm_nl_addr_send_ack+0x57c/0x610 net/mptcp/pm_netlink.c:788 Code: 5b 41 5c 41 5d 41 5e 41 5f 5d c3 cc cc cc cc e8 ca 7b d3 f5 eb b9 e8 c3 7b d3 f5 90 0f 0b 90 e9 dd fb ff ff e8 b5 7b d3 f5 90 <0f> 0b 90 e9 3e fb ff ff 44 89 f1 80 e1 07 38 c1 0f 8c eb fb ff ff RSP: 0000:ffffc900034f6f60 EFLAGS: 00010283 RAX: ffffffff8bee3c2b RBX: 0000000000000001 RCX: 0000000000080000 RDX: ffffc90004d42000 RSI: 000000000000a407 RDI: 000000000000a408 RBP: ffffc900034f7030 R08: ffffffff8bee37f6 R09: 0100000000000000 R10: dffffc0000000000 R11: ffffed100bcc62e4 R12: ffff88805e6316e0 R13: ffff88805e630c00 R14: dffffc0000000000 R15: ffff88805e630c00 FS: 00007f7e9a7e96c0(0000) GS:ffff8880b8600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000001b2fd18ff8 CR3: 0000000032c24000 CR4: 00000000003526f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> mptcp_pm_remove_addr+0x103/0x1d0 net/mptcp/pm.c:59 mptcp_pm_remove_anno_addr+0x1f4/0x2f0 net/mptcp/pm_netlink.c:1486 mptcp_nl_remove_subflow_and_signal_addr net/mptcp/pm_netlink.c:1518 [inline] mptcp_pm_nl_del_addr_doit+0x118d/0x1af0 net/mptcp/pm_netlink.c:1629 genl_family_rcv_msg_doit net/netlink/genetlink.c:1115 [inline] genl_family_rcv_msg net/netlink/genetlink.c:1195 [inline] genl_rcv_msg+0xb1f/0xec0 net/netlink/genetlink.c:1210 netlink_rcv_skb+0x206/0x480 net/netlink/af_netlink.c:2543 genl_rcv+0x28/0x40 net/netlink/genetlink.c:1219 netlink_unicast_kernel net/netlink/af_netlink.c:1322 [inline] netlink_unicast+0x7f6/0x990 net/netlink/af_netlink.c:1348 netlink_sendmsg+0x8de/0xcb0 net/netlink/af_netlink.c:1892 sock_sendmsg_nosec net/socket.c:718 [inline] __sock_sendmsg+0x221/0x270 net/socket.c:733 ____sys_sendmsg+0x53a/0x860 net/socket.c:2573 ___sys_sendmsg net/socket.c:2627 [inline] __sys_sendmsg+0x269/0x350 net/socket.c:2659 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7f7e9998cde9 Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 a8 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007f7e9a7e9038 EFLAGS: 00000246 ORIG_RAX: 000000000000002e RAX: ffffffffffffffda RBX: 00007f7e99ba5fa0 RCX: 00007f7e9998cde9 RDX: 000000002000c094 RSI: 0000400000000000 RDI: 0000000000000007 RBP: 00007f7e99a0e2a0 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 R13: 0000000000000000 R14: 00007f7e99ba5fa0 R15: 00007fff49231088 Indeed the PM can try to send a RM_ADDR over a msk without acquiring first the msk socket lock. The bugged code-path comes from an early optimization: when there are no subflows, the PM should (usually) not send RM_ADDR notifications. The above statement is incorrect, as without locks another process could concur ---truncated--- | ||||
| CVE-2025-40014 | 1 Linux | 1 Linux Kernel | 2025-10-30 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: objtool, spi: amd: Fix out-of-bounds stack access in amd_set_spi_freq() If speed_hz < AMD_SPI_MIN_HZ, amd_set_spi_freq() iterates over the entire amd_spi_freq array without breaking out early, causing 'i' to go beyond the array bounds. Fix that by stopping the loop when it gets to the last entry, so the low speed_hz value gets clamped up to AMD_SPI_MIN_HZ. Fixes the following warning with an UBSAN kernel: drivers/spi/spi-amd.o: error: objtool: amd_set_spi_freq() falls through to next function amd_spi_set_opcode() | ||||
| CVE-2025-21876 | 1 Linux | 1 Linux Kernel | 2025-10-30 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: iommu/vt-d: Fix suspicious RCU usage Commit <d74169ceb0d2> ("iommu/vt-d: Allocate DMAR fault interrupts locally") moved the call to enable_drhd_fault_handling() to a code path that does not hold any lock while traversing the drhd list. Fix it by ensuring the dmar_global_lock lock is held when traversing the drhd list. Without this fix, the following warning is triggered: ============================= WARNING: suspicious RCU usage 6.14.0-rc3 #55 Not tainted ----------------------------- drivers/iommu/intel/dmar.c:2046 RCU-list traversed in non-reader section!! other info that might help us debug this: rcu_scheduler_active = 1, debug_locks = 1 2 locks held by cpuhp/1/23: #0: ffffffff84a67c50 (cpu_hotplug_lock){++++}-{0:0}, at: cpuhp_thread_fun+0x87/0x2c0 #1: ffffffff84a6a380 (cpuhp_state-up){+.+.}-{0:0}, at: cpuhp_thread_fun+0x87/0x2c0 stack backtrace: CPU: 1 UID: 0 PID: 23 Comm: cpuhp/1 Not tainted 6.14.0-rc3 #55 Call Trace: <TASK> dump_stack_lvl+0xb7/0xd0 lockdep_rcu_suspicious+0x159/0x1f0 ? __pfx_enable_drhd_fault_handling+0x10/0x10 enable_drhd_fault_handling+0x151/0x180 cpuhp_invoke_callback+0x1df/0x990 cpuhp_thread_fun+0x1ea/0x2c0 smpboot_thread_fn+0x1f5/0x2e0 ? __pfx_smpboot_thread_fn+0x10/0x10 kthread+0x12a/0x2d0 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x4a/0x60 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30 </TASK> Holding the lock in enable_drhd_fault_handling() triggers a lockdep splat about a possible deadlock between dmar_global_lock and cpu_hotplug_lock. This is avoided by not holding dmar_global_lock when calling iommu_device_register(), which initiates the device probe process. | ||||
| CVE-2025-21877 | 1 Linux | 1 Linux Kernel | 2025-10-30 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: usbnet: gl620a: fix endpoint checking in genelink_bind() Syzbot reports [1] a warning in usb_submit_urb() triggered by inconsistencies between expected and actually present endpoints in gl620a driver. Since genelink_bind() does not properly verify whether specified eps are in fact provided by the device, in this case, an artificially manufactured one, one may get a mismatch. Fix the issue by resorting to a usbnet utility function usbnet_get_endpoints(), usually reserved for this very problem. Check for endpoints and return early before proceeding further if any are missing. [1] Syzbot report: usb 5-1: Manufacturer: syz usb 5-1: SerialNumber: syz usb 5-1: config 0 descriptor?? gl620a 5-1:0.23 usb0: register 'gl620a' at usb-dummy_hcd.0-1, ... ------------[ cut here ]------------ usb 5-1: BOGUS urb xfer, pipe 3 != type 1 WARNING: CPU: 2 PID: 1841 at drivers/usb/core/urb.c:503 usb_submit_urb+0xe4b/0x1730 drivers/usb/core/urb.c:503 Modules linked in: CPU: 2 UID: 0 PID: 1841 Comm: kworker/2:2 Not tainted 6.12.0-syzkaller-07834-g06afb0f36106 #0 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014 Workqueue: mld mld_ifc_work RIP: 0010:usb_submit_urb+0xe4b/0x1730 drivers/usb/core/urb.c:503 ... Call Trace: <TASK> usbnet_start_xmit+0x6be/0x2780 drivers/net/usb/usbnet.c:1467 __netdev_start_xmit include/linux/netdevice.h:5002 [inline] netdev_start_xmit include/linux/netdevice.h:5011 [inline] xmit_one net/core/dev.c:3590 [inline] dev_hard_start_xmit+0x9a/0x7b0 net/core/dev.c:3606 sch_direct_xmit+0x1ae/0xc30 net/sched/sch_generic.c:343 __dev_xmit_skb net/core/dev.c:3827 [inline] __dev_queue_xmit+0x13d4/0x43e0 net/core/dev.c:4400 dev_queue_xmit include/linux/netdevice.h:3168 [inline] neigh_resolve_output net/core/neighbour.c:1514 [inline] neigh_resolve_output+0x5bc/0x950 net/core/neighbour.c:1494 neigh_output include/net/neighbour.h:539 [inline] ip6_finish_output2+0xb1b/0x2070 net/ipv6/ip6_output.c:141 __ip6_finish_output net/ipv6/ip6_output.c:215 [inline] ip6_finish_output+0x3f9/0x1360 net/ipv6/ip6_output.c:226 NF_HOOK_COND include/linux/netfilter.h:303 [inline] ip6_output+0x1f8/0x540 net/ipv6/ip6_output.c:247 dst_output include/net/dst.h:450 [inline] NF_HOOK include/linux/netfilter.h:314 [inline] NF_HOOK include/linux/netfilter.h:308 [inline] mld_sendpack+0x9f0/0x11d0 net/ipv6/mcast.c:1819 mld_send_cr net/ipv6/mcast.c:2120 [inline] mld_ifc_work+0x740/0xca0 net/ipv6/mcast.c:2651 process_one_work+0x9c5/0x1ba0 kernel/workqueue.c:3229 process_scheduled_works kernel/workqueue.c:3310 [inline] worker_thread+0x6c8/0xf00 kernel/workqueue.c:3391 kthread+0x2c1/0x3a0 kernel/kthread.c:389 ret_from_fork+0x45/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244 </TASK> | ||||
| CVE-2025-10585 | 4 Apple, Google, Linux and 1 more | 5 Macos, Chrome, V8 and 2 more | 2025-10-30 | 8.8 High |
| Type confusion in V8 in Google Chrome prior to 140.0.7339.185 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: High) | ||||
| CVE-2025-21880 | 1 Linux | 1 Linux Kernel | 2025-10-30 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: drm/xe/userptr: fix EFAULT handling Currently we treat EFAULT from hmm_range_fault() as a non-fatal error when called from xe_vm_userptr_pin() with the idea that we want to avoid killing the entire vm and chucking an error, under the assumption that the user just did an unmap or something, and has no intention of actually touching that memory from the GPU. At this point we have already zapped the PTEs so any access should generate a page fault, and if the pin fails there also it will then become fatal. However it looks like it's possible for the userptr vma to still be on the rebind list in preempt_rebind_work_func(), if we had to retry the pin again due to something happening in the caller before we did the rebind step, but in the meantime needing to re-validate the userptr and this time hitting the EFAULT. This explains an internal user report of hitting: [ 191.738349] WARNING: CPU: 1 PID: 157 at drivers/gpu/drm/xe/xe_res_cursor.h:158 xe_pt_stage_bind.constprop.0+0x60a/0x6b0 [xe] [ 191.738551] Workqueue: xe-ordered-wq preempt_rebind_work_func [xe] [ 191.738616] RIP: 0010:xe_pt_stage_bind.constprop.0+0x60a/0x6b0 [xe] [ 191.738690] Call Trace: [ 191.738692] <TASK> [ 191.738694] ? show_regs+0x69/0x80 [ 191.738698] ? __warn+0x93/0x1a0 [ 191.738703] ? xe_pt_stage_bind.constprop.0+0x60a/0x6b0 [xe] [ 191.738759] ? report_bug+0x18f/0x1a0 [ 191.738764] ? handle_bug+0x63/0xa0 [ 191.738767] ? exc_invalid_op+0x19/0x70 [ 191.738770] ? asm_exc_invalid_op+0x1b/0x20 [ 191.738777] ? xe_pt_stage_bind.constprop.0+0x60a/0x6b0 [xe] [ 191.738834] ? ret_from_fork_asm+0x1a/0x30 [ 191.738849] bind_op_prepare+0x105/0x7b0 [xe] [ 191.738906] ? dma_resv_reserve_fences+0x301/0x380 [ 191.738912] xe_pt_update_ops_prepare+0x28c/0x4b0 [xe] [ 191.738966] ? kmemleak_alloc+0x4b/0x80 [ 191.738973] ops_execute+0x188/0x9d0 [xe] [ 191.739036] xe_vm_rebind+0x4ce/0x5a0 [xe] [ 191.739098] ? trace_hardirqs_on+0x4d/0x60 [ 191.739112] preempt_rebind_work_func+0x76f/0xd00 [xe] Followed by NPD, when running some workload, since the sg was never actually populated but the vma is still marked for rebind when it should be skipped for this special EFAULT case. This is confirmed to fix the user report. v2 (MattB): - Move earlier. v3 (MattB): - Update the commit message to make it clear that this indeed fixes the issue. (cherry picked from commit 6b93cb98910c826c2e2004942f8b060311e43618) | ||||
| CVE-2025-21881 | 1 Linux | 1 Linux Kernel | 2025-10-30 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: uprobes: Reject the shared zeropage in uprobe_write_opcode() We triggered the following crash in syzkaller tests: BUG: Bad page state in process syz.7.38 pfn:1eff3 page: refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x1eff3 flags: 0x3fffff00004004(referenced|reserved|node=0|zone=1|lastcpupid=0x1fffff) raw: 003fffff00004004 ffffe6c6c07bfcc8 ffffe6c6c07bfcc8 0000000000000000 raw: 0000000000000000 0000000000000000 00000000fffffffe 0000000000000000 page dumped because: PAGE_FLAGS_CHECK_AT_FREE flag(s) set Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x32/0x50 bad_page+0x69/0xf0 free_unref_page_prepare+0x401/0x500 free_unref_page+0x6d/0x1b0 uprobe_write_opcode+0x460/0x8e0 install_breakpoint.part.0+0x51/0x80 register_for_each_vma+0x1d9/0x2b0 __uprobe_register+0x245/0x300 bpf_uprobe_multi_link_attach+0x29b/0x4f0 link_create+0x1e2/0x280 __sys_bpf+0x75f/0xac0 __x64_sys_bpf+0x1a/0x30 do_syscall_64+0x56/0x100 entry_SYSCALL_64_after_hwframe+0x78/0xe2 BUG: Bad rss-counter state mm:00000000452453e0 type:MM_FILEPAGES val:-1 The following syzkaller test case can be used to reproduce: r2 = creat(&(0x7f0000000000)='./file0\x00', 0x8) write$nbd(r2, &(0x7f0000000580)=ANY=[], 0x10) r4 = openat(0xffffffffffffff9c, &(0x7f0000000040)='./file0\x00', 0x42, 0x0) mmap$IORING_OFF_SQ_RING(&(0x7f0000ffd000/0x3000)=nil, 0x3000, 0x0, 0x12, r4, 0x0) r5 = userfaultfd(0x80801) ioctl$UFFDIO_API(r5, 0xc018aa3f, &(0x7f0000000040)={0xaa, 0x20}) r6 = userfaultfd(0x80801) ioctl$UFFDIO_API(r6, 0xc018aa3f, &(0x7f0000000140)) ioctl$UFFDIO_REGISTER(r6, 0xc020aa00, &(0x7f0000000100)={{&(0x7f0000ffc000/0x4000)=nil, 0x4000}, 0x2}) ioctl$UFFDIO_ZEROPAGE(r5, 0xc020aa04, &(0x7f0000000000)={{&(0x7f0000ffd000/0x1000)=nil, 0x1000}}) r7 = bpf$PROG_LOAD(0x5, &(0x7f0000000140)={0x2, 0x3, &(0x7f0000000200)=ANY=[@ANYBLOB="1800000000120000000000000000000095"], &(0x7f0000000000)='GPL\x00', 0x7, 0x0, 0x0, 0x0, 0x0, '\x00', 0x0, @fallback=0x30, 0xffffffffffffffff, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x10, 0x0, @void, @value}, 0x94) bpf$BPF_LINK_CREATE_XDP(0x1c, &(0x7f0000000040)={r7, 0x0, 0x30, 0x1e, @val=@uprobe_multi={&(0x7f0000000080)='./file0\x00', &(0x7f0000000100)=[0x2], 0x0, 0x0, 0x1}}, 0x40) The cause is that zero pfn is set to the PTE without increasing the RSS count in mfill_atomic_pte_zeropage() and the refcount of zero folio does not increase accordingly. Then, the operation on the same pfn is performed in uprobe_write_opcode()->__replace_page() to unconditional decrease the RSS count and old_folio's refcount. Therefore, two bugs are introduced: 1. The RSS count is incorrect, when process exit, the check_mm() report error "Bad rss-count". 2. The reserved folio (zero folio) is freed when folio->refcount is zero, then free_pages_prepare->free_page_is_bad() report error "Bad page state". There is more, the following warning could also theoretically be triggered: __replace_page() -> ... -> folio_remove_rmap_pte() -> VM_WARN_ON_FOLIO(is_zero_folio(folio), folio) Considering that uprobe hit on the zero folio is a very rare case, just reject zero old folio immediately after get_user_page_vma_remote(). [ mingo: Cleaned up the changelog ] | ||||