Filtered by vendor Linux
Subscriptions
Total
16830 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2025-69270 | 3 Broadcom, Linux, Microsoft | 3 Dx Netops Spectrum, Linux Kernel, Windows | 2026-01-14 | 9.8 Critical |
| Information Exposure Through Query Strings in GET Request vulnerability in Broadcom DX NetOps Spectrum on Windows, Linux allows Session Hijacking.This issue affects DX NetOps Spectrum: 24.3.8 and earlier. | ||||
| CVE-2025-69271 | 3 Broadcom, Linux, Microsoft | 3 Dx Netops Spectrum, Linux Kernel, Windows | 2026-01-14 | 7.5 High |
| Insufficiently Protected Credentials vulnerability in Broadcom DX NetOps Spectrum on Windows, Linux allows Sniffing Attacks.This issue affects DX NetOps Spectrum: 24.3.13 and earlier. | ||||
| CVE-2025-69272 | 3 Broadcom, Linux, Microsoft | 3 Dx Netops Spectrum, Linux Kernel, Windows | 2026-01-14 | 7.5 High |
| Cleartext Transmission of Sensitive Information vulnerability in Broadcom DX NetOps Spectrum on Windows, Linux allows Sniffing Attacks.This issue affects DX NetOps Spectrum: 21.2.1 and earlier. | ||||
| CVE-2025-69273 | 3 Broadcom, Linux, Microsoft | 3 Dx Netops Spectrum, Linux Kernel, Windows | 2026-01-14 | 7.5 High |
| Improper Authentication vulnerability in Broadcom DX NetOps Spectrum on Windows, Linux allows Authentication Bypass.This issue affects DX NetOps Spectrum: 24.3.10 and earlier. | ||||
| CVE-2025-69274 | 3 Broadcom, Linux, Microsoft | 3 Dx Netops Spectrum, Linux Kernel, Windows | 2026-01-14 | 8.8 High |
| Authorization Bypass Through User-Controlled Key vulnerability in Broadcom DX NetOps Spectrum on Windows, Linux allows Privilege Escalation.This issue affects DX NetOps Spectrum: 24.3.10 and earlier. | ||||
| CVE-2025-69275 | 3 Broadcom, Linux, Microsoft | 3 Dx Netops Spectrum, Linux Kernel, Windows | 2026-01-14 | 6.1 Medium |
| Dependency on Vulnerable Third-Party Component vulnerability in Broadcom DX NetOps Spectrum on Windows, Linux allows DOM-Based XSS.This issue affects DX NetOps Spectrum: 24.3.9 and earlier. | ||||
| CVE-2025-69276 | 3 Broadcom, Linux, Microsoft | 3 Dx Netops Spectrum, Linux Kernel, Windows | 2026-01-14 | 8.8 High |
| Deserialization of Untrusted Data vulnerability in Broadcom DX NetOps Spectrum on Windows, Linux allows Object Injection.This issue affects DX NetOps Spectrum: 24.3.13 and earlier. | ||||
| CVE-2024-41061 | 1 Linux | 1 Linux Kernel | 2026-01-14 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix array-index-out-of-bounds in dml2/FCLKChangeSupport [Why] Potential out of bounds access in dml2_calculate_rq_and_dlg_params() because the value of out_lowest_state_idx used as an index for FCLKChangeSupport array can be greater than 1. [How] Currently dml2 core specifies identical values for all FCLKChangeSupport elements. Always use index 0 in the condition to avoid out of bounds access. | ||||
| CVE-2025-68809 | 1 Linux | 1 Linux Kernel | 2026-01-14 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: ksmbd: vfs: fix race on m_flags in vfs_cache ksmbd maintains delete-on-close and pending-delete state in ksmbd_inode->m_flags. In vfs_cache.c this field is accessed under inconsistent locking: some paths read and modify m_flags under ci->m_lock while others do so without taking the lock at all. Examples: - ksmbd_query_inode_status() and __ksmbd_inode_close() use ci->m_lock when checking or updating m_flags. - ksmbd_inode_pending_delete(), ksmbd_set_inode_pending_delete(), ksmbd_clear_inode_pending_delete() and ksmbd_fd_set_delete_on_close() used to read and modify m_flags without ci->m_lock. This creates a potential data race on m_flags when multiple threads open, close and delete the same file concurrently. In the worst case delete-on-close and pending-delete bits can be lost or observed in an inconsistent state, leading to confusing delete semantics (files that stay on disk after delete-on-close, or files that disappear while still in use). Fix it by: - Making ksmbd_query_inode_status() look at m_flags under ci->m_lock after dropping inode_hash_lock. - Adding ci->m_lock protection to all helpers that read or modify m_flags (ksmbd_inode_pending_delete(), ksmbd_set_inode_pending_delete(), ksmbd_clear_inode_pending_delete(), ksmbd_fd_set_delete_on_close()). - Keeping the existing ci->m_lock protection in __ksmbd_inode_close(), and moving the actual unlink/xattr removal outside the lock. This unifies the locking around m_flags and removes the data race while preserving the existing delete-on-close behaviour. | ||||
| CVE-2025-68806 | 1 Linux | 1 Linux Kernel | 2026-01-14 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix buffer validation by including null terminator size in EA length The smb2_set_ea function, which handles Extended Attributes (EA), was performing buffer validation checks that incorrectly omitted the size of the null terminating character (+1 byte) for EA Name. This patch fixes the issue by explicitly adding '+ 1' to EaNameLength where the null terminator is expected to be present in the buffer, ensuring the validation accurately reflects the total required buffer size. | ||||
| CVE-2025-68779 | 1 Linux | 1 Linux Kernel | 2026-01-14 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Avoid unregistering PSP twice PSP is unregistered twice in: _mlx5e_remove -> mlx5e_psp_unregister mlx5e_nic_cleanup -> mlx5e_psp_unregister This leads to a refcount underflow in some conditions: ------------[ cut here ]------------ refcount_t: underflow; use-after-free. WARNING: CPU: 2 PID: 1694 at lib/refcount.c:28 refcount_warn_saturate+0xd8/0xe0 [...] mlx5e_psp_unregister+0x26/0x50 [mlx5_core] mlx5e_nic_cleanup+0x26/0x90 [mlx5_core] mlx5e_remove+0xe6/0x1f0 [mlx5_core] auxiliary_bus_remove+0x18/0x30 device_release_driver_internal+0x194/0x1f0 bus_remove_device+0xc6/0x130 device_del+0x159/0x3c0 mlx5_rescan_drivers_locked+0xbc/0x2a0 [mlx5_core] [...] Do not directly remove psp from the _mlx5e_remove path, the PSP cleanup happens as part of profile cleanup. | ||||
| CVE-2025-68772 | 1 Linux | 1 Linux Kernel | 2026-01-14 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to avoid updating compression context during writeback Bai, Shuangpeng <sjb7183@psu.edu> reported a bug as below: Oops: divide error: 0000 [#1] SMP KASAN PTI CPU: 0 UID: 0 PID: 11441 Comm: syz.0.46 Not tainted 6.17.0 #1 PREEMPT(full) Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 RIP: 0010:f2fs_all_cluster_page_ready+0x106/0x550 fs/f2fs/compress.c:857 Call Trace: <TASK> f2fs_write_cache_pages fs/f2fs/data.c:3078 [inline] __f2fs_write_data_pages fs/f2fs/data.c:3290 [inline] f2fs_write_data_pages+0x1c19/0x3600 fs/f2fs/data.c:3317 do_writepages+0x38e/0x640 mm/page-writeback.c:2634 filemap_fdatawrite_wbc mm/filemap.c:386 [inline] __filemap_fdatawrite_range mm/filemap.c:419 [inline] file_write_and_wait_range+0x2ba/0x3e0 mm/filemap.c:794 f2fs_do_sync_file+0x6e6/0x1b00 fs/f2fs/file.c:294 generic_write_sync include/linux/fs.h:3043 [inline] f2fs_file_write_iter+0x76e/0x2700 fs/f2fs/file.c:5259 new_sync_write fs/read_write.c:593 [inline] vfs_write+0x7e9/0xe00 fs/read_write.c:686 ksys_write+0x19d/0x2d0 fs/read_write.c:738 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xf7/0x470 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f The bug was triggered w/ below race condition: fsync setattr ioctl - f2fs_do_sync_file - file_write_and_wait_range - f2fs_write_cache_pages : inode is non-compressed : cc.cluster_size = F2FS_I(inode)->i_cluster_size = 0 - tag_pages_for_writeback - f2fs_setattr - truncate_setsize - f2fs_truncate - f2fs_fileattr_set - f2fs_setflags_common - set_compress_context : F2FS_I(inode)->i_cluster_size = 4 : set_inode_flag(inode, FI_COMPRESSED_FILE) - f2fs_compressed_file : return true - f2fs_all_cluster_page_ready : "pgidx % cc->cluster_size" trigger dividing 0 issue Let's change as below to fix this issue: - introduce a new atomic type variable .writeback in structure f2fs_inode_info to track the number of threads which calling f2fs_write_cache_pages(). - use .i_sem lock to protect .writeback update. - check .writeback before update compression context in f2fs_setflags_common() to avoid race w/ ->writepages. | ||||
| CVE-2025-68812 | 1 Linux | 1 Linux Kernel | 2026-01-14 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: media: iris: Add sanity check for stop streaming Add sanity check in iris_vb2_stop_streaming. If inst->state is already IRIS_INST_ERROR, we should skip the stream_off operation because it would still send packets to the firmware. In iris_kill_session, inst->state is set to IRIS_INST_ERROR and session_close is executed, which will kfree(inst_hfi_gen2->packet). If stop_streaming is called afterward, it will cause a crash. [bod: remove qcom from patch title] | ||||
| CVE-2025-68811 | 1 Linux | 1 Linux Kernel | 2026-01-14 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: svcrdma: use rc_pageoff for memcpy byte offset svc_rdma_copy_inline_range added rc_curpage (page index) to the page base instead of the byte offset rc_pageoff. Use rc_pageoff so copies land within the current page. Found by ZeroPath (https://zeropath.com) | ||||
| CVE-2025-68790 | 1 Linux | 1 Linux Kernel | 2026-01-14 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: net/mlx5: Fix double unregister of HCA_PORTS component Clear hca_devcom_comp in device's private data after unregistering it in LAG teardown. Otherwise a slightly lagging second pass through mlx5_unload_one() might try to unregister it again and trip over use-after-free. On s390 almost all PCI level recovery events trigger two passes through mxl5_unload_one() - one through the poll_health() method and one through mlx5_pci_err_detected() as callback from generic PCI error recovery. While testing PCI error recovery paths with more kernel debug features enabled, this issue reproducibly led to kernel panics with the following call chain: Unable to handle kernel pointer dereference in virtual kernel address space Failing address: 6b6b6b6b6b6b6000 TEID: 6b6b6b6b6b6b6803 ESOP-2 FSI Fault in home space mode while using kernel ASCE. AS:00000000705c4007 R3:0000000000000024 Oops: 0038 ilc:3 [#1]SMP CPU: 14 UID: 0 PID: 156 Comm: kmcheck Kdump: loaded Not tainted 6.18.0-20251130.rc7.git0.16131a59cab1.300.fc43.s390x+debug #1 PREEMPT Krnl PSW : 0404e00180000000 0000020fc86aa1dc (__lock_acquire+0x5c/0x15f0) R:0 T:1 IO:0 EX:0 Key:0 M:1 W:0 P:0 AS:3 CC:2 PM:0 RI:0 EA:3 Krnl GPRS: 0000000000000000 0000020f00000001 6b6b6b6b6b6b6c33 0000000000000000 0000000000000000 0000000000000000 0000000000000001 0000000000000000 0000000000000000 0000020fca28b820 0000000000000000 0000010a1ced8100 0000010a1ced8100 0000020fc9775068 0000018fce14f8b8 0000018fce14f7f8 Krnl Code: 0000020fc86aa1cc: e3b003400004 lg %r11,832 0000020fc86aa1d2: a7840211 brc 8,0000020fc86aa5f4 *0000020fc86aa1d6: c09000df0b25 larl %r9,0000020fca28b820 >0000020fc86aa1dc: d50790002000 clc 0(8,%r9),0(%r2) 0000020fc86aa1e2: a7840209 brc 8,0000020fc86aa5f4 0000020fc86aa1e6: c0e001100401 larl %r14,0000020fca8aa9e8 0000020fc86aa1ec: c01000e25a00 larl %r1,0000020fca2f55ec 0000020fc86aa1f2: a7eb00e8 aghi %r14,232 Call Trace: __lock_acquire+0x5c/0x15f0 lock_acquire.part.0+0xf8/0x270 lock_acquire+0xb0/0x1b0 down_write+0x5a/0x250 mlx5_detach_device+0x42/0x110 [mlx5_core] mlx5_unload_one_devl_locked+0x50/0xc0 [mlx5_core] mlx5_unload_one+0x42/0x60 [mlx5_core] mlx5_pci_err_detected+0x94/0x150 [mlx5_core] zpci_event_attempt_error_recovery+0xcc/0x388 | ||||
| CVE-2025-71092 | 1 Linux | 1 Linux Kernel | 2026-01-14 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: RDMA/bnxt_re: Fix OOB write in bnxt_re_copy_err_stats() Commit ef56081d1864 ("RDMA/bnxt_re: RoCE related hardware counters update") added three new counters and placed them after BNXT_RE_OUT_OF_SEQ_ERR. BNXT_RE_OUT_OF_SEQ_ERR acts as a boundary marker for allocating hardware statistics with different num_counters values on chip_gen_p5_p7 devices. As a result, BNXT_RE_NUM_STD_COUNTERS are used when allocating hw_stats, which leads to an out-of-bounds write in bnxt_re_copy_err_stats(). The counters BNXT_RE_REQ_CQE_ERROR, BNXT_RE_RESP_CQE_ERROR, and BNXT_RE_RESP_REMOTE_ACCESS_ERRS are applicable to generic hardware, not only p5/p7 devices. Fix this by moving these counters before BNXT_RE_OUT_OF_SEQ_ERR so they are included in the generic counter set. | ||||
| CVE-2025-71088 | 1 Linux | 1 Linux Kernel | 2026-01-14 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: mptcp: fallback earlier on simult connection Syzkaller reports a simult-connect race leading to inconsistent fallback status: WARNING: CPU: 3 PID: 33 at net/mptcp/subflow.c:1515 subflow_data_ready+0x40b/0x7c0 net/mptcp/subflow.c:1515 Modules linked in: CPU: 3 UID: 0 PID: 33 Comm: ksoftirqd/3 Not tainted syzkaller #0 PREEMPT(full) Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014 RIP: 0010:subflow_data_ready+0x40b/0x7c0 net/mptcp/subflow.c:1515 Code: 89 ee e8 78 61 3c f6 40 84 ed 75 21 e8 8e 66 3c f6 44 89 fe bf 07 00 00 00 e8 c1 61 3c f6 41 83 ff 07 74 09 e8 76 66 3c f6 90 <0f> 0b 90 e8 6d 66 3c f6 48 89 df e8 e5 ad ff ff 31 ff 89 c5 89 c6 RSP: 0018:ffffc900006cf338 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff888031acd100 RCX: ffffffff8b7f2abf RDX: ffff88801e6ea440 RSI: ffffffff8b7f2aca RDI: 0000000000000005 RBP: 0000000000000000 R08: 0000000000000005 R09: 0000000000000007 R10: 0000000000000004 R11: 0000000000002c10 R12: ffff88802ba69900 R13: 1ffff920000d9e67 R14: ffff888046f81800 R15: 0000000000000004 FS: 0000000000000000(0000) GS:ffff8880d69bc000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000560fc0ca1670 CR3: 0000000032c3a000 CR4: 0000000000352ef0 Call Trace: <TASK> tcp_data_queue+0x13b0/0x4f90 net/ipv4/tcp_input.c:5197 tcp_rcv_state_process+0xfdf/0x4ec0 net/ipv4/tcp_input.c:6922 tcp_v6_do_rcv+0x492/0x1740 net/ipv6/tcp_ipv6.c:1672 tcp_v6_rcv+0x2976/0x41e0 net/ipv6/tcp_ipv6.c:1918 ip6_protocol_deliver_rcu+0x188/0x1520 net/ipv6/ip6_input.c:438 ip6_input_finish+0x1e4/0x4b0 net/ipv6/ip6_input.c:489 NF_HOOK include/linux/netfilter.h:318 [inline] NF_HOOK include/linux/netfilter.h:312 [inline] ip6_input+0x105/0x2f0 net/ipv6/ip6_input.c:500 dst_input include/net/dst.h:471 [inline] ip6_rcv_finish net/ipv6/ip6_input.c:79 [inline] NF_HOOK include/linux/netfilter.h:318 [inline] NF_HOOK include/linux/netfilter.h:312 [inline] ipv6_rcv+0x264/0x650 net/ipv6/ip6_input.c:311 __netif_receive_skb_one_core+0x12d/0x1e0 net/core/dev.c:5979 __netif_receive_skb+0x1d/0x160 net/core/dev.c:6092 process_backlog+0x442/0x15e0 net/core/dev.c:6444 __napi_poll.constprop.0+0xba/0x550 net/core/dev.c:7494 napi_poll net/core/dev.c:7557 [inline] net_rx_action+0xa9f/0xfe0 net/core/dev.c:7684 handle_softirqs+0x216/0x8e0 kernel/softirq.c:579 run_ksoftirqd kernel/softirq.c:968 [inline] run_ksoftirqd+0x3a/0x60 kernel/softirq.c:960 smpboot_thread_fn+0x3f7/0xae0 kernel/smpboot.c:160 kthread+0x3c2/0x780 kernel/kthread.c:463 ret_from_fork+0x5d7/0x6f0 arch/x86/kernel/process.c:148 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:245 </TASK> The TCP subflow can process the simult-connect syn-ack packet after transitioning to TCP_FIN1 state, bypassing the MPTCP fallback check, as the sk_state_change() callback is not invoked for * -> FIN_WAIT1 transitions. That will move the msk socket to an inconsistent status and the next incoming data will hit the reported splat. Close the race moving the simult-fallback check at the earliest possible stage - that is at syn-ack generation time. About the fixes tags: [2] was supposed to also fix this issue introduced by [3]. [1] is required as a dependence: it was not explicitly marked as a fix, but it is one and it has already been backported before [3]. In other words, this commit should be backported up to [3], including [2] and [1] if that's not already there. | ||||
| CVE-2025-68823 | 1 Linux | 1 Linux Kernel | 2026-01-14 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: ublk: fix deadlock when reading partition table When one process(such as udev) opens ublk block device (e.g., to read the partition table via bdev_open()), a deadlock[1] can occur: 1. bdev_open() grabs disk->open_mutex 2. The process issues read I/O to ublk backend to read partition table 3. In __ublk_complete_rq(), blk_update_request() or blk_mq_end_request() runs bio->bi_end_io() callbacks 4. If this triggers fput() on file descriptor of ublk block device, the work may be deferred to current task's task work (see fput() implementation) 5. This eventually calls blkdev_release() from the same context 6. blkdev_release() tries to grab disk->open_mutex again 7. Deadlock: same task waiting for a mutex it already holds The fix is to run blk_update_request() and blk_mq_end_request() with bottom halves disabled. This forces blkdev_release() to run in kernel work-queue context instead of current task work context, and allows ublk server to make forward progress, and avoids the deadlock. [axboe: rewrite comment in ublk] | ||||
| CVE-2025-68778 | 1 Linux | 1 Linux Kernel | 2026-01-14 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: btrfs: don't log conflicting inode if it's a dir moved in the current transaction We can't log a conflicting inode if it's a directory and it was moved from one parent directory to another parent directory in the current transaction, as this can result an attempt to have a directory with two hard links during log replay, one for the old parent directory and another for the new parent directory. The following scenario triggers that issue: 1) We have directories "dir1" and "dir2" created in a past transaction. Directory "dir1" has inode A as its parent directory; 2) We move "dir1" to some other directory; 3) We create a file with the name "dir1" in directory inode A; 4) We fsync the new file. This results in logging the inode of the new file and the inode for the directory "dir1" that was previously moved in the current transaction. So the log tree has the INODE_REF item for the new location of "dir1"; 5) We move the new file to some other directory. This results in updating the log tree to included the new INODE_REF for the new location of the file and removes the INODE_REF for the old location. This happens during the rename when we call btrfs_log_new_name(); 6) We fsync the file, and that persists the log tree changes done in the previous step (btrfs_log_new_name() only updates the log tree in memory); 7) We have a power failure; 8) Next time the fs is mounted, log replay happens and when processing the inode for directory "dir1" we find a new INODE_REF and add that link, but we don't remove the old link of the inode since we have not logged the old parent directory of the directory inode "dir1". As a result after log replay finishes when we trigger writeback of the subvolume tree's extent buffers, the tree check will detect that we have a directory a hard link count of 2 and we get a mount failure. The errors and stack traces reported in dmesg/syslog are like this: [ 3845.729764] BTRFS info (device dm-0): start tree-log replay [ 3845.730304] page: refcount:3 mapcount:0 mapping:000000005c8a3027 index:0x1d00 pfn:0x11510c [ 3845.731236] memcg:ffff9264c02f4e00 [ 3845.731751] aops:btree_aops [btrfs] ino:1 [ 3845.732300] flags: 0x17fffc00000400a(uptodate|private|writeback|node=0|zone=2|lastcpupid=0x1ffff) [ 3845.733346] raw: 017fffc00000400a 0000000000000000 dead000000000122 ffff9264d978aea8 [ 3845.734265] raw: 0000000000001d00 ffff92650e6d4738 00000003ffffffff ffff9264c02f4e00 [ 3845.735305] page dumped because: eb page dump [ 3845.735981] BTRFS critical (device dm-0): corrupt leaf: root=5 block=30408704 slot=6 ino=257, invalid nlink: has 2 expect no more than 1 for dir [ 3845.737786] BTRFS info (device dm-0): leaf 30408704 gen 10 total ptrs 17 free space 14881 owner 5 [ 3845.737789] BTRFS info (device dm-0): refs 4 lock_owner 0 current 30701 [ 3845.737792] item 0 key (256 INODE_ITEM 0) itemoff 16123 itemsize 160 [ 3845.737794] inode generation 3 transid 9 size 16 nbytes 16384 [ 3845.737795] block group 0 mode 40755 links 1 uid 0 gid 0 [ 3845.737797] rdev 0 sequence 2 flags 0x0 [ 3845.737798] atime 1764259517.0 [ 3845.737800] ctime 1764259517.572889464 [ 3845.737801] mtime 1764259517.572889464 [ 3845.737802] otime 1764259517.0 [ 3845.737803] item 1 key (256 INODE_REF 256) itemoff 16111 itemsize 12 [ 3845.737805] index 0 name_len 2 [ 3845.737807] item 2 key (256 DIR_ITEM 2363071922) itemoff 16077 itemsize 34 [ 3845.737808] location key (257 1 0) type 2 [ 3845.737810] transid 9 data_len 0 name_len 4 [ 3845.737811] item 3 key (256 DIR_ITEM 2676584006) itemoff 16043 itemsize 34 [ 3845.737813] location key (258 1 0) type 2 [ 3845.737814] transid 9 data_len 0 name_len 4 [ 3845.737815] item 4 key (256 DIR_INDEX 2) itemoff 16009 itemsize 34 [ 3845.737816] location key (257 1 0) type 2 [ ---truncated--- | ||||
| CVE-2025-68805 | 1 Linux | 1 Linux Kernel | 2026-01-14 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: fuse: fix io-uring list corruption for terminated non-committed requests When a request is terminated before it has been committed, the request is not removed from the queue's list. This leaves a dangling list entry that leads to list corruption and use-after-free issues. Remove the request from the queue's list for terminated non-committed requests. | ||||