Filtered by vendor Redhat Subscriptions
Filtered by product Rhel Eus Subscriptions
Total 3005 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2022-45061 4 Fedoraproject, Netapp, Python and 1 more 13 Fedora, Active Iq Unified Manager, Bootstrap Os and 10 more 2025-05-01 7.5 High
An issue was discovered in Python before 3.11.1. An unnecessary quadratic algorithm exists in one path when processing some inputs to the IDNA (RFC 3490) decoder, such that a crafted, unreasonably long name being presented to the decoder could lead to a CPU denial of service. Hostnames are often supplied by remote servers that could be controlled by a malicious actor; in such a scenario, they could trigger excessive CPU consumption on the client attempting to make use of an attacker-supplied supposed hostname. For example, the attack payload could be placed in the Location header of an HTTP response with status code 302. A fix is planned in 3.11.1, 3.10.9, 3.9.16, 3.8.16, and 3.7.16.
CVE-2022-45060 5 Debian, Fedoraproject, Redhat and 2 more 11 Debian Linux, Fedora, Enterprise Linux and 8 more 2025-05-01 7.5 High
An HTTP Request Forgery issue was discovered in Varnish Cache 5.x and 6.x before 6.0.11, 7.x before 7.1.2, and 7.2.x before 7.2.1. An attacker may introduce characters through HTTP/2 pseudo-headers that are invalid in the context of an HTTP/1 request line, causing the Varnish server to produce invalid HTTP/1 requests to the backend. This could, in turn, be used to exploit vulnerabilities in a server behind the Varnish server. Note: the 6.0.x LTS series (before 6.0.11) is affected.
CVE-2022-4304 3 Openssl, Redhat, Stormshield 8 Openssl, Enterprise Linux, Jboss Core Services and 5 more 2025-05-01 5.9 Medium
A timing based side channel exists in the OpenSSL RSA Decryption implementation which could be sufficient to recover a plaintext across a network in a Bleichenbacher style attack. To achieve a successful decryption an attacker would have to be able to send a very large number of trial messages for decryption. The vulnerability affects all RSA padding modes: PKCS#1 v1.5, RSA-OEAP and RSASVE. For example, in a TLS connection, RSA is commonly used by a client to send an encrypted pre-master secret to the server. An attacker that had observed a genuine connection between a client and a server could use this flaw to send trial messages to the server and record the time taken to process them. After a sufficiently large number of messages the attacker could recover the pre-master secret used for the original connection and thus be able to decrypt the application data sent over that connection.
CVE-2023-0286 3 Openssl, Redhat, Stormshield 13 Openssl, Enterprise Linux, Jboss Core Services and 10 more 2025-05-01 7.4 High
There is a type confusion vulnerability relating to X.400 address processing inside an X.509 GeneralName. X.400 addresses were parsed as an ASN1_STRING but the public structure definition for GENERAL_NAME incorrectly specified the type of the x400Address field as ASN1_TYPE. This field is subsequently interpreted by the OpenSSL function GENERAL_NAME_cmp as an ASN1_TYPE rather than an ASN1_STRING. When CRL checking is enabled (i.e. the application sets the X509_V_FLAG_CRL_CHECK flag), this vulnerability may allow an attacker to pass arbitrary pointers to a memcmp call, enabling them to read memory contents or enact a denial of service. In most cases, the attack requires the attacker to provide both the certificate chain and CRL, neither of which need to have a valid signature. If the attacker only controls one of these inputs, the other input must already contain an X.400 address as a CRL distribution point, which is uncommon. As such, this vulnerability is most likely to only affect applications which have implemented their own functionality for retrieving CRLs over a network.
CVE-2024-3596 5 Broadcom, Freeradius, Ietf and 2 more 12 Brocade Sannav, Fabric Operating System, Freeradius and 9 more 2025-05-01 9 Critical
RADIUS Protocol under RFC 2865 is susceptible to forgery attacks by a local attacker who can modify any valid Response (Access-Accept, Access-Reject, or Access-Challenge) to any other response using a chosen-prefix collision attack against MD5 Response Authenticator signature.
CVE-2023-38545 5 Fedoraproject, Haxx, Microsoft and 2 more 19 Fedora, Libcurl, Windows 10 1809 and 16 more 2025-05-01 8.8 High
This flaw makes curl overflow a heap based buffer in the SOCKS5 proxy handshake. When curl is asked to pass along the host name to the SOCKS5 proxy to allow that to resolve the address instead of it getting done by curl itself, the maximum length that host name can be is 255 bytes. If the host name is detected to be longer, curl switches to local name resolving and instead passes on the resolved address only. Due to this bug, the local variable that means "let the host resolve the name" could get the wrong value during a slow SOCKS5 handshake, and contrary to the intention, copy the too long host name to the target buffer instead of copying just the resolved address there. The target buffer being a heap based buffer, and the host name coming from the URL that curl has been told to operate with.
CVE-2024-27982 2 Nodejs, Redhat 3 Node.js, Enterprise Linux, Rhel Eus 2025-04-30 6.1 Medium
The team has identified a critical vulnerability in the http server of the most recent version of Node, where malformed headers can lead to HTTP request smuggling. Specifically, if a space is placed before a content-length header, it is not interpreted correctly, enabling attackers to smuggle in a second request within the body of the first.
CVE-2024-27983 2 Nodejs, Redhat 7 Nodejs, Enterprise Linux, Rhel Aus and 4 more 2025-04-30 7.5 High
An attacker can make the Node.js HTTP/2 server completely unavailable by sending a small amount of HTTP/2 frames packets with a few HTTP/2 frames inside. It is possible to leave some data in nghttp2 memory after reset when headers with HTTP/2 CONTINUATION frame are sent to the server and then a TCP connection is abruptly closed by the client triggering the Http2Session destructor while header frames are still being processed (and stored in memory) causing a race condition.
CVE-2024-22025 1 Redhat 3 Enterprise Linux, Rhel E4s, Rhel Eus 2025-04-30 6.5 Medium
A vulnerability in Node.js has been identified, allowing for a Denial of Service (DoS) attack through resource exhaustion when using the fetch() function to retrieve content from an untrusted URL. The vulnerability stems from the fact that the fetch() function in Node.js always decodes Brotli, making it possible for an attacker to cause resource exhaustion when fetching content from an untrusted URL. An attacker controlling the URL passed into fetch() can exploit this vulnerability to exhaust memory, potentially leading to process termination, depending on the system configuration.
CVE-2024-22019 4 Netapp, Node.js, Nodejs and 1 more 6 Astra Control Center, Node.js, Node.js and 3 more 2025-04-30 7.5 High
A vulnerability in Node.js HTTP servers allows an attacker to send a specially crafted HTTP request with chunked encoding, leading to resource exhaustion and denial of service (DoS). The server reads an unbounded number of bytes from a single connection, exploiting the lack of limitations on chunk extension bytes. The issue can cause CPU and network bandwidth exhaustion, bypassing standard safeguards like timeouts and body size limits.
CVE-2024-21892 3 Linux, Nodejs, Redhat 4 Linux Kernel, Node.js, Enterprise Linux and 1 more 2025-04-30 7.8 High
On Linux, Node.js ignores certain environment variables if those may have been set by an unprivileged user while the process is running with elevated privileges with the only exception of CAP_NET_BIND_SERVICE. Due to a bug in the implementation of this exception, Node.js incorrectly applies this exception even when certain other capabilities have been set. This allows unprivileged users to inject code that inherits the process's elevated privileges.
CVE-2023-46809 2 Nodejs, Redhat 3 Nodejs, Enterprise Linux, Rhel Eus 2025-04-30 7.4 High
Node.js versions which bundle an unpatched version of OpenSSL or run against a dynamically linked version of OpenSSL which are unpatched are vulnerable to the Marvin Attack - https://people.redhat.com/~hkario/marvin/, if PCKS #1 v1.5 padding is allowed when performing RSA descryption using a private key.
CVE-2023-30590 2 Nodejs, Redhat 3 Node.js, Enterprise Linux, Rhel Eus 2025-04-30 7.5 High
The generateKeys() API function returned from crypto.createDiffieHellman() only generates missing (or outdated) keys, that is, it only generates a private key if none has been set yet, but the function is also needed to compute the corresponding public key after calling setPrivateKey(). However, the documentation says this API call: "Generates private and public Diffie-Hellman key values". The documented behavior is very different from the actual behavior, and this difference could easily lead to security issues in applications that use these APIs as the DiffieHellman may be used as the basis for application-level security, implications are consequently broad.
CVE-2023-30588 2 Nodejs, Redhat 3 Node.js, Enterprise Linux, Rhel Eus 2025-04-30 5.3 Medium
When an invalid public key is used to create an x509 certificate using the crypto.X509Certificate() API a non-expect termination occurs making it susceptible to DoS attacks when the attacker could force interruptions of application processing, as the process terminates when accessing public key info of provided certificates from user code. The current context of the users will be gone, and that will cause a DoS scenario. This vulnerability affects all active Node.js versions v16, v18, and, v20.
CVE-2023-30589 3 Fedoraproject, Nodejs, Redhat 4 Fedora, Node.js, Enterprise Linux and 1 more 2025-04-30 7.5 High
The llhttp parser in the http module in Node v20.2.0 does not strictly use the CRLF sequence to delimit HTTP requests. This can lead to HTTP Request Smuggling (HRS). The CR character (without LF) is sufficient to delimit HTTP header fields in the llhttp parser. According to RFC7230 section 3, only the CRLF sequence should delimit each header-field. This impacts all Node.js active versions: v16, v18, and, v20
CVE-2022-35256 5 Debian, Llhttp, Nodejs and 2 more 7 Debian Linux, Llhttp, Node.js and 4 more 2025-04-30 6.5 Medium
The llhttp parser in the http module in Node v18.7.0 does not correctly handle header fields that are not terminated with CLRF. This may result in HTTP Request Smuggling.
CVE-2022-32213 7 Debian, Fedoraproject, Llhttp and 4 more 9 Debian Linux, Fedora, Llhttp and 6 more 2025-04-30 6.5 Medium
The llhttp parser <v14.20.1, <v16.17.1 and <v18.9.1 in the http module in Node.js does not correctly parse and validate Transfer-Encoding headers and can lead to HTTP Request Smuggling (HRS).
CVE-2022-32212 5 Debian, Fedoraproject, Nodejs and 2 more 7 Debian Linux, Fedora, Node.js and 4 more 2025-04-30 8.1 High
A OS Command Injection vulnerability exists in Node.js versions <14.20.0, <16.20.0, <18.5.0 due to an insufficient IsAllowedHost check that can easily be bypassed because IsIPAddress does not properly check if an IP address is invalid before making DBS requests allowing rebinding attacks.
CVE-2022-32214 5 Debian, Llhttp, Nodejs and 2 more 7 Debian Linux, Llhttp, Node.js and 4 more 2025-04-30 6.5 Medium
The llhttp parser <v14.20.1, <v16.17.1 and <v18.9.1 in the http module in Node.js does not strictly use the CRLF sequence to delimit HTTP requests. This can lead to HTTP Request Smuggling (HRS).
CVE-2022-32215 7 Debian, Fedoraproject, Llhttp and 4 more 9 Debian Linux, Fedora, Llhttp and 6 more 2025-04-30 6.5 Medium
The llhttp parser <v14.20.1, <v16.17.1 and <v18.9.1 in the http module in Node.js does not correctly handle multi-line Transfer-Encoding headers. This can lead to HTTP Request Smuggling (HRS).