Filtered by vendor Redhat
Subscriptions
Filtered by product Rhel E4s
Subscriptions
Total
1599 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2025-4083 | 2 Mozilla, Redhat | 8 Firefox, Thunderbird, Enterprise Linux and 5 more | 2025-05-09 | 9.1 Critical |
A process isolation vulnerability in Thunderbird stemmed from improper handling of javascript: URIs, which could allow content to execute in the top-level document's process instead of the intended frame, potentially enabling a sandbox escape. This vulnerability affects Firefox < 138, Firefox ESR < 128.10, Firefox ESR < 115.23, Thunderbird < 138, and Thunderbird < 128.10. | ||||
CVE-2025-4087 | 2 Mozilla, Redhat | 8 Firefox, Thunderbird, Enterprise Linux and 5 more | 2025-05-09 | 6.5 Medium |
A vulnerability was identified in Thunderbird where XPath parsing could trigger undefined behavior due to missing null checks during attribute access. This could lead to out-of-bounds read access and potentially, memory corruption. This vulnerability affects Firefox < 138, Firefox ESR < 128.10, Thunderbird < 138, and Thunderbird < 128.10. | ||||
CVE-2025-4091 | 2 Mozilla, Redhat | 8 Firefox, Thunderbird, Enterprise Linux and 5 more | 2025-05-09 | 6.5 Medium |
Memory safety bugs present in Firefox 137, Thunderbird 137, Firefox ESR 128.9, and Thunderbird 128.9. Some of these bugs showed evidence of memory corruption and we presume that with enough effort some of these could have been exploited to run arbitrary code. This vulnerability affects Firefox < 138, Firefox ESR < 128.10, Thunderbird < 138, and Thunderbird < 128.10. | ||||
CVE-2025-4093 | 2 Mozilla, Redhat | 8 Firefox, Thunderbird, Enterprise Linux and 5 more | 2025-05-09 | 6.5 Medium |
Memory safety bug present in Firefox ESR 128.9, and Thunderbird 128.9. This bug showed evidence of memory corruption and we presume that with enough effort this could have been exploited to run arbitrary code. This vulnerability affects Firefox ESR < 128.10 and Thunderbird < 128.10. | ||||
CVE-2024-11218 | 1 Redhat | 7 Enterprise Linux, Openshift, Openshift Ironic and 4 more | 2025-05-08 | 8.6 High |
A vulnerability was found in `podman build` and `buildah.` This issue occurs in a container breakout by using --jobs=2 and a race condition when building a malicious Containerfile. SELinux might mitigate it, but even with SELinux on, it still allows the enumeration of files and directories on the host. | ||||
CVE-2023-6858 | 3 Debian, Mozilla, Redhat | 9 Debian Linux, Firefox, Firefox Esr and 6 more | 2025-05-07 | 8.8 High |
Firefox was susceptible to a heap buffer overflow in `nsTextFragment` due to insufficient OOM handling. This vulnerability affects Firefox ESR < 115.6, Thunderbird < 115.6, and Firefox < 121. | ||||
CVE-2023-45230 | 2 Redhat, Tianocore | 6 Enterprise Linux, Rhel Aus, Rhel E4s and 3 more | 2025-05-07 | 8.3 High |
EDK2's Network Package is susceptible to a buffer overflow vulnerability via a long server ID option in DHCPv6 client. This vulnerability can be exploited by an attacker to gain unauthorized access and potentially lead to a loss of Confidentiality, Integrity and/or Availability. | ||||
CVE-2024-38540 | 2 Linux, Redhat | 6 Linux Kernel, Enterprise Linux, Rhel Aus and 3 more | 2025-05-07 | 4.4 Medium |
In the Linux kernel, the following vulnerability has been resolved: bnxt_re: avoid shift undefined behavior in bnxt_qplib_alloc_init_hwq Undefined behavior is triggered when bnxt_qplib_alloc_init_hwq is called with hwq_attr->aux_depth != 0 and hwq_attr->aux_stride == 0. In that case, "roundup_pow_of_two(hwq_attr->aux_stride)" gets called. roundup_pow_of_two is documented as undefined for 0. Fix it in the one caller that had this combination. The undefined behavior was detected by UBSAN: UBSAN: shift-out-of-bounds in ./include/linux/log2.h:57:13 shift exponent 64 is too large for 64-bit type 'long unsigned int' CPU: 24 PID: 1075 Comm: (udev-worker) Not tainted 6.9.0-rc6+ #4 Hardware name: Abacus electric, s.r.o. - servis@abacus.cz Super Server/H12SSW-iN, BIOS 2.7 10/25/2023 Call Trace: <TASK> dump_stack_lvl+0x5d/0x80 ubsan_epilogue+0x5/0x30 __ubsan_handle_shift_out_of_bounds.cold+0x61/0xec __roundup_pow_of_two+0x25/0x35 [bnxt_re] bnxt_qplib_alloc_init_hwq+0xa1/0x470 [bnxt_re] bnxt_qplib_create_qp+0x19e/0x840 [bnxt_re] bnxt_re_create_qp+0x9b1/0xcd0 [bnxt_re] ? srso_alias_return_thunk+0x5/0xfbef5 ? srso_alias_return_thunk+0x5/0xfbef5 ? __kmalloc+0x1b6/0x4f0 ? create_qp.part.0+0x128/0x1c0 [ib_core] ? __pfx_bnxt_re_create_qp+0x10/0x10 [bnxt_re] create_qp.part.0+0x128/0x1c0 [ib_core] ib_create_qp_kernel+0x50/0xd0 [ib_core] create_mad_qp+0x8e/0xe0 [ib_core] ? __pfx_qp_event_handler+0x10/0x10 [ib_core] ib_mad_init_device+0x2be/0x680 [ib_core] add_client_context+0x10d/0x1a0 [ib_core] enable_device_and_get+0xe0/0x1d0 [ib_core] ib_register_device+0x53c/0x630 [ib_core] ? srso_alias_return_thunk+0x5/0xfbef5 bnxt_re_probe+0xbd8/0xe50 [bnxt_re] ? __pfx_bnxt_re_probe+0x10/0x10 [bnxt_re] auxiliary_bus_probe+0x49/0x80 ? driver_sysfs_add+0x57/0xc0 really_probe+0xde/0x340 ? pm_runtime_barrier+0x54/0x90 ? __pfx___driver_attach+0x10/0x10 __driver_probe_device+0x78/0x110 driver_probe_device+0x1f/0xa0 __driver_attach+0xba/0x1c0 bus_for_each_dev+0x8f/0xe0 bus_add_driver+0x146/0x220 driver_register+0x72/0xd0 __auxiliary_driver_register+0x6e/0xd0 ? __pfx_bnxt_re_mod_init+0x10/0x10 [bnxt_re] bnxt_re_mod_init+0x3e/0xff0 [bnxt_re] ? __pfx_bnxt_re_mod_init+0x10/0x10 [bnxt_re] do_one_initcall+0x5b/0x310 do_init_module+0x90/0x250 init_module_from_file+0x86/0xc0 idempotent_init_module+0x121/0x2b0 __x64_sys_finit_module+0x5e/0xb0 do_syscall_64+0x82/0x160 ? srso_alias_return_thunk+0x5/0xfbef5 ? syscall_exit_to_user_mode_prepare+0x149/0x170 ? srso_alias_return_thunk+0x5/0xfbef5 ? syscall_exit_to_user_mode+0x75/0x230 ? srso_alias_return_thunk+0x5/0xfbef5 ? do_syscall_64+0x8e/0x160 ? srso_alias_return_thunk+0x5/0xfbef5 ? __count_memcg_events+0x69/0x100 ? srso_alias_return_thunk+0x5/0xfbef5 ? count_memcg_events.constprop.0+0x1a/0x30 ? srso_alias_return_thunk+0x5/0xfbef5 ? handle_mm_fault+0x1f0/0x300 ? srso_alias_return_thunk+0x5/0xfbef5 ? do_user_addr_fault+0x34e/0x640 ? srso_alias_return_thunk+0x5/0xfbef5 ? srso_alias_return_thunk+0x5/0xfbef5 entry_SYSCALL_64_after_hwframe+0x76/0x7e RIP: 0033:0x7f4e5132821d Code: ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d e3 db 0c 00 f7 d8 64 89 01 48 RSP: 002b:00007ffca9c906a8 EFLAGS: 00000246 ORIG_RAX: 0000000000000139 RAX: ffffffffffffffda RBX: 0000563ec8a8f130 RCX: 00007f4e5132821d RDX: 0000000000000000 RSI: 00007f4e518fa07d RDI: 000000000000003b RBP: 00007ffca9c90760 R08: 00007f4e513f6b20 R09: 00007ffca9c906f0 R10: 0000563ec8a8faa0 R11: 0000000000000246 R12: 00007f4e518fa07d R13: 0000000000020000 R14: 0000563ec8409e90 R15: 0000563ec8a8fa60 </TASK> ---[ end trace ]--- | ||||
CVE-2021-47293 | 2 Linux, Redhat | 4 Linux Kernel, Rhel Aus, Rhel E4s and 1 more | 2025-05-07 | 7.8 High |
In the Linux kernel, the following vulnerability has been resolved: net/sched: act_skbmod: Skip non-Ethernet packets Currently tcf_skbmod_act() assumes that packets use Ethernet as their L2 protocol, which is not always the case. As an example, for CAN devices: $ ip link add dev vcan0 type vcan $ ip link set up vcan0 $ tc qdisc add dev vcan0 root handle 1: htb $ tc filter add dev vcan0 parent 1: protocol ip prio 10 \ matchall action skbmod swap mac Doing the above silently corrupts all the packets. Do not perform skbmod actions for non-Ethernet packets. | ||||
CVE-2025-27363 | 3 Debian, Freetype, Redhat | 9 Debian Linux, Freetype, Enterprise Linux and 6 more | 2025-05-07 | 8.1 High |
An out of bounds write exists in FreeType versions 2.13.0 and below (newer versions of FreeType are not vulnerable) when attempting to parse font subglyph structures related to TrueType GX and variable font files. The vulnerable code assigns a signed short value to an unsigned long and then adds a static value causing it to wrap around and allocate too small of a heap buffer. The code then writes up to 6 signed long integers out of bounds relative to this buffer. This may result in arbitrary code execution. This vulnerability may have been exploited in the wild. | ||||
CVE-2024-20945 | 2 Oracle, Redhat | 11 Graalvm, Graalvm For Jdk, Jdk and 8 more | 2025-05-07 | 4.7 Medium |
Vulnerability in the Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: Security). Supported versions that are affected are Oracle Java SE: 8u391, 8u391-perf, 11.0.21, 17.0.9, 21.0.1; Oracle GraalVM for JDK: 17.0.9, 21.0.1; Oracle GraalVM Enterprise Edition: 20.3.12, 21.3.8 and 22.3.4. Difficult to exploit vulnerability allows low privileged attacker with logon to the infrastructure where Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition executes to compromise Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized access to critical data or complete access to all Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition accessible data. Note: This vulnerability can be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. This vulnerability also applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. CVSS 3.1 Base Score 4.7 (Confidentiality impacts). CVSS Vector: (CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:N/A:N). | ||||
CVE-2024-20921 | 2 Oracle, Redhat | 11 Graalvm, Graalvm For Jdk, Jdk and 8 more | 2025-05-07 | 5.9 Medium |
Vulnerability in the Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: Hotspot). Supported versions that are affected are Oracle Java SE: 8u391, 8u391-perf, 11.0.21, 17.0.9, 21.0.1; Oracle GraalVM for JDK: 17.0.9, 21.0.1; Oracle GraalVM Enterprise Edition: 20.3.12, 21.3.8 and 22.3.4. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized access to critical data or complete access to all Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition accessible data. Note: This vulnerability can be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. This vulnerability also applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. CVSS 3.1 Base Score 5.9 (Confidentiality impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:N/A:N). | ||||
CVE-2018-25032 | 12 Apple, Azul, Debian and 9 more | 46 Mac Os X, Macos, Zulu and 43 more | 2025-05-06 | 7.5 High |
zlib before 1.2.12 allows memory corruption when deflating (i.e., when compressing) if the input has many distant matches. | ||||
CVE-2017-5715 | 8 Arm, Canonical, Debian and 5 more | 230 Cortex-a, Ubuntu Linux, Debian Linux and 227 more | 2025-05-06 | 5.6 Medium |
Systems with microprocessors utilizing speculative execution and indirect branch prediction may allow unauthorized disclosure of information to an attacker with local user access via a side-channel analysis. | ||||
CVE-2022-32206 | 7 Debian, Fedoraproject, Haxx and 4 more | 35 Debian Linux, Fedora, Curl and 32 more | 2025-05-05 | 6.5 Medium |
curl < 7.84.0 supports "chained" HTTP compression algorithms, meaning that a serverresponse can be compressed multiple times and potentially with different algorithms. The number of acceptable "links" in this "decompression chain" was unbounded, allowing a malicious server to insert a virtually unlimited number of compression steps.The use of such a decompression chain could result in a "malloc bomb", makingcurl end up spending enormous amounts of allocated heap memory, or trying toand returning out of memory errors. | ||||
CVE-2022-25315 | 6 Debian, Fedoraproject, Libexpat Project and 3 more | 12 Debian Linux, Fedora, Libexpat and 9 more | 2025-05-05 | 9.8 Critical |
In Expat (aka libexpat) before 2.4.5, there is an integer overflow in storeRawNames. | ||||
CVE-2022-25236 | 5 Debian, Libexpat Project, Oracle and 2 more | 11 Debian Linux, Libexpat, Http Server and 8 more | 2025-05-05 | 9.8 Critical |
xmlparse.c in Expat (aka libexpat) before 2.4.5 allows attackers to insert namespace-separator characters into namespace URIs. | ||||
CVE-2022-25235 | 6 Debian, Fedoraproject, Libexpat Project and 3 more | 12 Debian Linux, Fedora, Libexpat and 9 more | 2025-05-05 | 9.8 Critical |
xmltok_impl.c in Expat (aka libexpat) before 2.4.5 lacks certain validation of encoding, such as checks for whether a UTF-8 character is valid in a certain context. | ||||
CVE-2022-21166 | 6 Debian, Fedoraproject, Intel and 3 more | 14 Debian Linux, Fedora, Sgx Dcap and 11 more | 2025-05-05 | 5.5 Medium |
Incomplete cleanup in specific special register write operations for some Intel(R) Processors may allow an authenticated user to potentially enable information disclosure via local access. | ||||
CVE-2022-21125 | 6 Debian, Fedoraproject, Intel and 3 more | 14 Debian Linux, Fedora, Sgx Dcap and 11 more | 2025-05-05 | 5.5 Medium |
Incomplete cleanup of microarchitectural fill buffers on some Intel(R) Processors may allow an authenticated user to potentially enable information disclosure via local access. |