Filtered by vendor Redhat Subscriptions
Filtered by product Enterprise Linux Subscriptions
Total 15551 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2026-1484 1 Redhat 1 Enterprise Linux 2026-02-03 4.2 Medium
A flaw was found in the GLib Base64 encoding routine when processing very large input data. Due to incorrect use of integer types during length calculation, the library may miscalculate buffer boundaries. This can cause memory writes outside the allocated buffer. Applications that process untrusted or extremely large Base64 input using GLib may crash or behave unpredictably.
CVE-2026-1760 1 Redhat 1 Enterprise Linux 2026-02-03 5.3 Medium
A flaw was found in SoupServer. This HTTP request smuggling vulnerability occurs because SoupServer improperly handles requests that combine Transfer-Encoding: chunked and Connection: keep-alive headers. A remote, unauthenticated client can exploit this by sending specially crafted requests, causing SoupServer to fail to close the connection as required by RFC 9112. This allows the attacker to smuggle additional requests over the persistent connection, leading to unintended request processing and potential denial-of-service (DoS) conditions.
CVE-2026-1757 1 Redhat 3 Enterprise Linux, Jboss Core Services, Openshift 2026-02-03 6.2 Medium
A flaw was identified in the interactive shell of the xmllint utility, part of the libxml2 project, where memory allocated for user input is not properly released under certain conditions. When a user submits input consisting only of whitespace, the program skips command execution but fails to free the allocated buffer. Repeating this action causes memory to continuously accumulate. Over time, this can exhaust system memory and terminate the xmllint process, creating a denial-of-service condition on the local system.
CVE-2023-5870 2 Postgresql, Redhat 22 Postgresql, Advanced Cluster Security, Codeready Linux Builder Eus and 19 more 2026-02-02 2.2 Low
A flaw was found in PostgreSQL involving the pg_cancel_backend role that signals background workers, including the logical replication launcher, autovacuum workers, and the autovacuum launcher. Successful exploitation requires a non-core extension with a less-resilient background worker and would affect that specific background worker only. This issue may allow a remote high privileged user to launch a denial of service (DoS) attack.
CVE-2025-4598 5 Debian, Linux, Oracle and 2 more 10 Debian Linux, Linux Kernel, Linux and 7 more 2026-02-02 4.7 Medium
A vulnerability was found in systemd-coredump. This flaw allows an attacker to force a SUID process to crash and replace it with a non-SUID binary to access the original's privileged process coredump, allowing the attacker to read sensitive data, such as /etc/shadow content, loaded by the original process. A SUID binary or process has a special type of permission, which allows the process to run with the file owner's permissions, regardless of the user executing the binary. This allows the process to access more restricted data than unprivileged users or processes would be able to. An attacker can leverage this flaw by forcing a SUID process to crash and force the Linux kernel to recycle the process PID before systemd-coredump can analyze the /proc/pid/auxv file. If the attacker wins the race condition, they gain access to the original's SUID process coredump file. They can read sensitive content loaded into memory by the original binary, affecting data confidentiality.
CVE-2024-50120 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2026-01-30 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: smb: client: Handle kstrdup failures for passwords In smb3_reconfigure(), after duplicating ctx->password and ctx->password2 with kstrdup(), we need to check for allocation failures. If ses->password allocation fails, return -ENOMEM. If ses->password2 allocation fails, free ses->password, set it to NULL, and return -ENOMEM.
CVE-2025-4432 1 Redhat 5 Enterprise Linux, Openshift, Satellite and 2 more 2026-01-29 5.3 Medium
A flaw was found in Rust's Ring package. A panic may be triggered when overflow checking is enabled. In the QUIC protocol, this flaw allows an attacker to induce this panic by sending a specially crafted packet. It will likely occur unintentionally in 1 out of every 2**32 packets sent or received.
CVE-2025-4373 1 Redhat 8 Enterprise Linux, Insights Proxy, Openshift Distributed Tracing and 5 more 2026-01-29 4.8 Medium
A flaw was found in GLib, which is vulnerable to an integer overflow in the g_string_insert_unichar() function. When the position at which to insert the character is large, the position will overflow, leading to a buffer underwrite.
CVE-2025-26465 4 Debian, Netapp, Openbsd and 1 more 9 Debian Linux, Active Iq Unified Manager, Ontap and 6 more 2026-01-29 6.8 Medium
A vulnerability was found in OpenSSH when the VerifyHostKeyDNS option is enabled. A machine-in-the-middle attack can be performed by a malicious machine impersonating a legit server. This issue occurs due to how OpenSSH mishandles error codes in specific conditions when verifying the host key. For an attack to be considered successful, the attacker needs to manage to exhaust the client's memory resource first, turning the attack complexity high.
CVE-2025-0690 1 Redhat 2 Enterprise Linux, Openshift 2026-01-29 6.1 Medium
The read command is used to read the keyboard input from the user, while reads it keeps the input length in a 32-bit integer value which is further used to reallocate the line buffer to accept the next character. During this process, with a line big enough it's possible to make this variable to overflow leading to a out-of-bounds write in the heap based buffer. This flaw may be leveraged to corrupt grub's internal critical data and secure boot bypass is not discarded as consequence.
CVE-2025-0677 1 Redhat 2 Enterprise Linux, Openshift 2026-01-29 6.4 Medium
A flaw was found in grub2. When performing a symlink lookup, the grub's UFS module checks the inode's data size to allocate the internal buffer to read the file content, however, it fails to check if the symlink data size has overflown. When this occurs, grub_malloc() may be called with a smaller value than needed. When further reading the data from the disk into the buffer, the grub_ufs_lookup_symlink() function will write past the end of the allocated size. An attack can leverage this by crafting a malicious filesystem, and as a result, it will corrupt data stored in the heap, allowing for arbitrary code execution used to by-pass secure boot mechanisms.
CVE-2025-0622 1 Redhat 2 Enterprise Linux, Openshift 2026-01-29 6.4 Medium
A flaw was found in command/gpg. In some scenarios, hooks created by loaded modules are not removed when the related module is unloaded. This flaw allows an attacker to force grub2 to call the hooks once the module that registered it was unloaded, leading to a use-after-free vulnerability. If correctly exploited, this vulnerability may result in arbitrary code execution, eventually allowing the attacker to bypass secure boot protections.
CVE-2024-45781 1 Redhat 2 Enterprise Linux, Openshift 2026-01-29 6.7 Medium
A flaw was found in grub2. When reading a symbolic link's name from a UFS filesystem, grub2 fails to validate the string length taken as an input. The lack of validation may lead to a heap out-of-bounds write, causing data integrity issues and eventually allowing an attacker to circumvent secure boot protections.
CVE-2024-45777 2 Gnu, Redhat 3 Grub2, Enterprise Linux, Openshift 2026-01-29 6.7 Medium
A flaw was found in grub2. The calculation of the translation buffer when reading a language .mo file in grub_gettext_getstr_from_position() may overflow, leading to a Out-of-bound write. This issue can be leveraged by an attacker to overwrite grub2's sensitive heap data, eventually leading to the circumvention of secure boot protections.
CVE-2024-45776 1 Redhat 2 Enterprise Linux, Openshift 2026-01-29 6.7 Medium
When reading the language .mo file in grub_mofile_open(), grub2 fails to verify an integer overflow when allocating its internal buffer. A crafted .mo file may lead the buffer size calculation to overflow, leading to out-of-bound reads and writes. This flaw allows an attacker to leak sensitive data or overwrite critical data, possibly circumventing secure boot protections.
CVE-2024-45775 1 Redhat 2 Enterprise Linux, Openshift 2026-01-29 5.2 Medium
A flaw was found in grub2 where the grub_extcmd_dispatcher() function calls grub_arg_list_alloc() to allocate memory for the grub's argument list. However, it fails to check in case the memory allocation fails. Once the allocation fails, a NULL point will be processed by the parse_option() function, leading grub to crash or, in some rare scenarios, corrupt the IVT data.
CVE-2024-45774 1 Redhat 2 Enterprise Linux, Openshift 2026-01-29 6.7 Medium
A flaw was found in grub2. A specially crafted JPEG file can cause the JPEG parser of grub2 to incorrectly check the bounds of its internal buffers, resulting in an out-of-bounds write. The possibility of overwriting sensitive information to bypass secure boot protections is not discarded.
CVE-2026-1536 1 Redhat 1 Enterprise Linux 2026-01-29 5.8 Medium
A flaw was found in libsoup. An attacker who can control the input for the Content-Disposition header can inject CRLF (Carriage Return Line Feed) sequences into the header value. These sequences are then interpreted verbatim when the HTTP request or response is constructed, allowing arbitrary HTTP headers to be injected. This vulnerability can lead to HTTP header injection or HTTP response splitting without requiring authentication or user interaction.
CVE-2026-1539 1 Redhat 1 Enterprise Linux 2026-01-29 5.8 Medium
A flaw was found in the libsoup HTTP library that can cause proxy authentication credentials to be sent to unintended destinations. When handling HTTP redirects, libsoup removes the Authorization header but does not remove the Proxy-Authorization header if the request is redirected to a different host. As a result, sensitive proxy credentials may be leaked to third-party servers. Applications using libsoup for HTTP communication may unintentionally expose proxy authentication data.
CVE-2025-59089 1 Redhat 8 Enterprise Linux, Enterprise Linux Eus, Rhel Aus and 5 more 2026-01-28 5.9 Medium
If an attacker causes kdcproxy to connect to an attacker-controlled KDC server (e.g. through server-side request forgery), they can exploit the fact that kdcproxy does not enforce bounds on TCP response length to conduct a denial-of-service attack. While receiving the KDC's response, kdcproxy copies the entire buffered stream into a new buffer on each recv() call, even when the transfer is incomplete, causing excessive memory allocation and CPU usage. Additionally, kdcproxy accepts incoming response chunks as long as the received data length is not exactly equal to the length indicated in the response header, even when individual chunks or the total buffer exceed the maximum length of a Kerberos message. This allows an attacker to send unbounded data until the connection timeout is reached (approximately 12 seconds), exhausting server memory or CPU resources. Multiple concurrent requests can cause accept queue overflow, denying service to legitimate clients.